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FOREWORD 

Development of optimal on the accuracy methods of research of the 
structure of polycrystalline systems began in Moscow Institute of steel 
and alloys, and continued (after an enforced break) as a private scientific 
activity. 

Best analysis of diffraction observations on the basis of established 
theoretical models brought new knowledge about the plastic deformation 
structures. 

The third edition was supplemented by the method of determining the 
long-range order in the dislocation structure of crystals, which in practice 
gave important results for understanding the kinetics of martensitic trans-
formation during the hardening of steel (Ch. 6–7 and 10). 

A fundamentally new idea of shear transformations in metals originat-
ed: first of a macroscopic level (textural transformation), and now of 
a microscopic level (martensitic transformation). 

The methodology embodied in the high-tech software products, which 
are a tool to automate the research of deformed metal with crystals of 
cubic symmetry, constituting the main class of materials. 

X-ray measuring test specimens were performed by Kozlov Dmitry 
Alexandrovich, with his exceptional integrity. 

 
 F.F. Satdarova 
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INTRODUCTION 
Macroscopic structural states of a deformed polycrystalline system are 

determined by the degree of ordering of the orientations of crystals. Each 
macroscopic state has some distribution of microstates, characterized by 
the parameters of random system of dislocations in inhomogeneously 
deformed crystals [72]. 

Theoretical analysis of the kinetics of the crystal orientation distribu-
tion suggests the following conceptual model of structural transformation 
of a polycrystalline system [76]: 

 In the area of non-critical deformations, nonequilibrium fluctuations 
of crystal orientations evolve, and a short-range orientational order is 
formed (continuous change of metastable states). 

 When deformation reaches the critical value, the collective of crystals 
undergo instantaneous consistent rotation, a long-range orientational 
order arises, and a structure with special symmetry is formed (abrupt 
transition into a qualitatively new stable state). 

At the transformation instant, the fluctuation of crystal orientations in 
which the plastic strain rate increases more rapidly is sharply localized in 
the orientation space; the other fluctuations "frozen". This is evidenced by 
the formation of shear bands with macroscopic orientational order and a 
sharp increase in the dislocation density in closely oriented crystals  
[52, 74]. 

Self-organization of strongly non-equilibrium polycrystalline system 
is hypothesized as natural way of forming the crystallographic texture. In 
pursuit of the overall insensitively order a dislocation fluctuation is born, 
creating intra-crystalline disorder. It has developed a holistic picture of 
the structure states of deformed metals. 

The method of achieving the objective of the study is subject to uni-
fied principle: high quality theoretical model, the best experiment to esti-
mate of the model, maximum possible accuracy of the physical parame-
ters by model. 
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PART I 
CRYSTALLOGRAPHIC TEXTURE 
OF DEFORMED METALS 

Mathematical model for the emergence of scientific direction predicts 
that in the decision the problem, which not be solved; large scientific 
community is involved [9]. The confirmation became "a recovering the 
distribution function of orientations from the pole figures" [7]. The diver-
sity of mathematical methods created to processing traditional texture 
measurements is presented into qualified overview [89]. 

The pole figures, where clearly expressed the symmetry of the crystal-
lographic texture, the density probability of the orientations of crystals (as 
understood by the distribution function of orientations) appeared in a 
"ghost" mode. Orientation probability distribution is not obvious substi-
tuted by the function reproducing the observed fluctuations of orienta-
tions. Computational methods are powerless to extract information, which 
is not in the experiment. 

To distribution of random orientations in polycrystalline material, sta-
tistical estimation method is objectively predefined [64, 71]: 

1. Theoretical formulation of probability distribution in accordance 
with the physical nature of the texture. 

2. Experiment seeks to acquiring information on the distribution of the 
orientations of crystals. 

3. Reliable estimates of the distribution parameters by the experi-
mental data. 

Texture function that represents the essence of the object has true the-
oretical and practical usefulness to explore the properties of deformed  
metals. 
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CHAPTER 1 
THE ORETICAL PROBABILITY DISTRIBUTION  
OF THE CRYSTAL ORIENTATIONS. TEXTURE FUNCTION 

In the theoretical texture functions general mathematical representation is 
driven to conformity with physical limitations and experience. Physical limi-
tations follow from symmetry of object. Experience revealed that is the most 
significant in the object. 

§ 1.1. Invariance of the Texture Function Relative 
to Symmetry Transformations 

Probability distribution of the crystal orientations has the Fourier repre-
sentation in the space of generalized spherical functions consistent with rep-
resentation of continuous groups of three-dimensional rotations [99]. 

1. The space of representation of the texture function. Crystal orienta-
tion by rotating the lattice basis is described in the coordinate system  
(X, Y, Z). Texture function f(g), where g is the vector that defines the rota-
tion in three-dimensional space, is considered to be specified on the group 
of rotations G. What is implied it is an abstract infinite group with con-
stantly changing of parameters of elements of g, and therefore the group 
is called continuous. 

When the matrix representing rotation built in normal space with a basis 
of three unit vectors (u1, u2, u3), group parameters are projections of rotation 
axis on the coordinate axes multiplied by a rotation angle. When extending 
matrix representation the group of rotations over to a space of functions as 
parameters choose Euler angles. When Eulerian coordinates any rotation is 
expressed as product of three simple rotations around the coordinate axes u1, 
u2, u3 [37]. 

Introduced different designations Euler angles: 
 
Korn [37] Vilenkin [100] Viglin [99] Roe [56] 

  =  +  2 =   =  
  =   =   =  
  =    1=   =  

 
Let us adopt the notation R. Roe [56], who designed the foundations of 

the harmonic analysis of pole figures. Elements of continuous rotation group 
will as follow 

    , , ,0,0 0, ,0 0,0,g g g g  

 0 2 ,    0 ,    0 2 .  
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Group of matrices of size (2l+1) (2l+1) , representing the rotation with 
Euler angles, is composed of elements of type l

mnT g , where l is the maxi-
mum value of m indexes for abstract basis vectors um(g) of functional space, 
and n is indexes for new basis vectors after rotation of basis. The number l 
can take values (0, 1 2, 1, 3 2, 2, ), but half-integer representation is not peri-
odic on 2  range (double-digit) [16]. 

For integer l the basis vectors of ( l+1)-dimensional representation space 
are orthonormal spherical functions [37]: 

 

!2 1,   cos .
4

( )
!

m im
lm l

l mlY P e
l m

 

Here, cosm
lP  is the attached Legendre functions of degree of l and 

order of m (l = 0, 1, 2,  (m = 0, 1, 2,  , l) ); ,  is spherical coordi-
nates. (This designation of the spherical functions is adopted in the field of 
theoretical physics, although with a changing arrangement of the indexes.) 

Basis spherical functions of rotated basis with transformed coordinates 
have decomposition on the original basis functions. The decomposition 
coefficients exactly are the matrix elements of representation the group of 
rotations: 

 
, , .

l
l

ln mn lm
m l

Y T Yg
 

Matrix elements l
mnT g  form a space in which they are orthogonal as m, 

n, and l: 

 
  

*2 1 l l
mn m n ll mm nnl T T d

G

g g g
 

( *l
mnT g  is complex conjugate element) [16]. 

Considered as a function of continuous rotation g( , , ) parameters, ma-
trix elements l

mnT g  are the generalized spherical functions.1 They contain 
the generalized attached Legendre functions [100]: 

  cos( ) .l im mn in
mn lT e P eg  

                                                      
1 A lot of reference information about spherical functions collected in a book 
Bunge [7]. 



8 

Private expressions of mn
lP t , where t = cos , are 

 

0 ( )
(

! ,
)!

m m
l l

l mP t P t
l m  

0 ( )
(

! .
)!

n n
l l

l nP t P t
l n  

Any function f(g) on group G, such that 

 
 

2
,f d

G

g g
 

can be expanded into converging on average Fourier series by function 
l

mnT g  [100]: 

 0
,

l l
l

lmn mn
l m l n l

f W Tg g
 

 
2 1 ,l

lmn mnlW f T d
G

g g g
 

 

2 21

0

2 1 .
l l

lmn
l m ln l

f d l W
G

g g
 

Groups of symmetry both of crystal lattice and of sample, having a finite 
number of elements, are subgroups of continuous rotation group. Require-
ment of invariance of the texture function f(g) to the symmetry transfor-
mations imposes strict limitations on its representations in the chosen basis of 
generalized spherical functions l

mnT g . 
2. Valid harmonics of the texture function under cubic symmetry of 

crystals. By definition R. Roe [56] the angles  and  are spherical coordi-
nates of the basis vector of crystal lattice in the coordinate system of the sam-
ple,  is angle of rotation crystal around its own basis vector. Crystallograph-
ic orientation (hkl)[uvw] is described by Euler angles ( , , ): 

 
2 2 2

cos  ,l

h k l  
2 2 2

cos   ,   0 u

u v w
h k

 

 

2 2 2

2 2 2 2 2 2 2
cos ,   cos  . , 0h w h k l

h k u v k
h

w
k

h  
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In the group of cubic symmetry, which refers to point groups (all axis and 
planes of symmetry contain a fixed point that is any lattice site), are only 24 
elements. This is four rotations around the axis 001  on the angle 2 (rear-
ranging of indexes h, k and changing their sign), three rotations around the 
axis 111  on the angle 2 3 (a cyclic rearranging of indices (hkl)[uvw]) and 
two rotations around the axis 110  on the angle  (changing sign l and w). 

Valuable a priori information about the harmonics f(g) is acquired 
through decomposition of representations of a continuous rotation group as to 
representations of crystallographic point group [16]. The information ob-
tained by methods of the theory of groups for cubic symmetry of crystals is 
shown in Table 1.1. 

Table 1.1. 
Invariants relative to the group of cubic symmetry  
in the representation of three-dimensional rotation 

Number of 
invariants 

The degree of 
spherical harmonics 

Theoretical information on Fourier 
coefficients of the texture function 

0 l = 1, 2, 3, 5, 7, 11 All coefficients Wlmn are zero. 
1 (a) l = 4, 6, 8, 10, 14 Wlmn = 0 if m   2k, n   4k (k = 0, 1, 2, ); 

Wlmn, where n = 4, 8,  ( n   l),  
are linearly related to  

Wlm0 ( m  = 0, 2, 4,  , l). 
1 (b) l = 9, 13, 15, 17, 19, 

23 
Wlmn = 0 if n = 0 ( m  = 0, 2, 4, ); 
Wlmn, where n = 8, 12,  ( n   l),  

are linearly related to  
Wlm4 = W lm 4 ( m  = 0, 2, 4, ). 

2 (a) l = 12, 16, 18, 20, 22, 
26 

Wlmn, where n = 8, 12,  ( n   l),  
are linearly related to  

Wlm0  Wlm4 = W lm 4 ( m  = 0, 2, 4,  , l). 
2 (b) l = 21, 25, 27, 29, 31, 

35 
Wlmn, where n = 12, 16,  ( n   l),  

are linearly related to  
Wlm4 = W lm 4 and  

Wlm8 = W lm 8 ( m  = 0, 2, 4, ). 
 
Due to the symmetry of the crystal lattice occurs disappearance of the se-

ries coefficients in expansion of f(g). The non-zero Fourier coefficients are 
Wlmn only the even order of m and multiple of four of an order of n. For even 
m and n relations between the harmonics are simplified: 

 
,  .( )lmn llmn lmn mnW W W W m m n n
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Moreover there are relations of the Fourier coefficients Wlmn of different 
orders of n indicated in the Table 1.1. Linear equations relating Wlmn with 
even degree l  22 (at l = 24 number of invariants reaches three) are given in 
the article by R. Roe [57]. 

All Fourier coefficients Wlmn odd degrees of l with the order of n = 0 turn 
to zero. For following n they are linearly related. For example, 

      9 8 9 40.64168895           0, 2, ), 8 ,(m mW W m  

 

 13 8 13 4

 13 12 13 4

  0.29019050
0.72981613

m m

m m

W W
W W      ( 0, , )2 , 12 .m  

The proportion of independent spherical harmonics of even and odd de-
gree l in the Fourier representation of f(g) can be seen from Table 1.2. 

 
Table 1.2. 

Numbers of independent harmonics of even and odd degree  
in the Fourier representation of the texture function 

Type * The limiting degree of harmonics 
4 6 8 10 12 14 16 18 20 22 24 

 (a) 3 8 13 19 33 41 59 79 101 125 164 
(b) 0 0 0 5 5 12 20 29 39 61 73 

* (a) even degree; (b) odd degree. 
 
Any rotation g, mixing the related to l

mnT  spherical basis functions Ylm of 
the same degree l, when decomposition along original basis, is mixing as well 
Fourier coefficients Wlmn with identical l, n: 

 
.

l
l

lm n mm lmn
m l

W T Wg
 

The only coefficient – W000 is invariant with respect to all rotations of 
three-dimensional space. 

The full group of orthogonal transformation in three-dimensional space, 
denoted as O3 except rotations includes inversion, which change the direction 
of the coordinate axes X, Y, Z. Subsequent rotation, for example, around the Z 
axis by angle  returns direction the X, Y axis, the reflection in the horizontal 
plane will remain. At rhombic symmetry of a sample there are three reflec-
tion planes perpendicular to the axes of rotation forming the coordinate sys-
tem (X, Y, Z). 

For invariance f(g) with respect to reflection in the horizontal symmetry 
plane of a sample the Fourier series should consist of symmetric representa-
tions 
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1 , , , , .
2

l l
mn mnT T  

Toward reflections in the vertical planes of symmetry of a sample f(g) is 
invariant only when the imaginary component of the Fourier coefficients 

 

1
2lmn lmn lmnW U iV  equal to zero, since l

mnT g  when reflected in the 
vertical planes are converted into complex conjugate [16]. 

Mathematical expression for harmonics of the texture function appears in 
a statistical model of the probability distribution of crystal orientations. 

§ 1.2. Probability Density of the Orientations of Crystals 
in the Rhombic Texture 

Theoretical probability density of orientations is forming by a model of 
spherical normal dispersion of the crystallographic vectors relative to the di-
rections of ordering really existing for a plane deformed metals [71]. 

1. Mixed probability distribution of the orientations in polycrys-
talline system. Mathematical description of the real crystallographic tex-
ture is function 

 
    

1
t t t t

1

(,  

,

( , ,

, ,   , ,

)
s

s

f fg B g C

B B B B C
  (1.1) 

where  is weight fraction of -th component of the texture, having a 
density distribution of orientations ( ,( )f g C  with the parameters of C  (t-
superscript denotes transpose). 

Each of texture components, the number of which is s, in three-
dimensional space of rotations of G being presented as the set of density 
maxima of the orientations  1, , pE e e  in accord with the symmetry 
transformations of crystal (p is the repetition factor). 

Discrete distribution of ordered crystallographic orientations in G can be 
approximated by the density function 

  
1

1

1, .
p

k
k

p
R g E e g   (1.2) 

Transformation of the -function with g was induced by rotation, which is 
involved in the elements of group E [16]. 
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Let us introduce the function Q(g, ), which describes a random disper-
sion of orientations with respect to the expected by E. Parameter  is meas-
ure of dispersion. Probability density of crystal orientations in a given texture 
component is determined by the convolution of the functions Q(g,K) R(g,E). 

The form of the functions Q(g, ), R(g,E) is the same for all ( ,( )f g C , 
only their parameters are changing, which are components of the vector 

 

t,C E K  (  = 1,  , s). Therefore in the following mathematical 
expressions  index is dropped. 

Let the external coordinate system is built according to the rhombic sym-
metry of plane deformed metal, and let the most probable crystallographic 
orientation at this system is (001)[100]. Through choice of the coordinate 
system in crystal any orientation can be converted to that type. 

It is reasonably to suggest that the dispersion of the orientations of crys-
tals combines the deviations of crystallographic planes (001) from plane of 
the deformation and the deviations of crystallographic directions [100]  
lying in the plane from the rolling axis. The observed random (hkl)[uvw] ori-
entation has a rotation g( , , ) [12]: 

 
sin cos ,           cos cos cos sin sin ,

sin sin ,              cos cos sin sin cos ,
cos ,                       cos sin .

h u
k v
l w

 

When exposed to a large number the dispersion factors existing in reality, 
the occurrence probability of random (hkl) and [uvw] near the expected (001) 
and [100] are theoretically subject to the normal law [19, 6]: 

 

1 2 (
( [) ]

cos cos cos cos sin sin
 001  100 ;~ ,   ~hk uvwlQ e Q e

 
1 and 2 is probability distribution parameters (similar to the inverse of 

the variance). 
It can suggest that deviations the vectors of a crystal lattice around the or-

dering directions are independent random variables. Convolution of functions 
Q(hkl) (001) and Q[uvw] [100] will give the spherical normal model of the orienta-
tions probability density: 

  1 2

1

1
0 2

1

cos cossh, ,IQ eg   (1.3) 
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1

2

1
8 ²

;  , 1,  sin ;Q d d d d d
G

g g g

 
In(x) is a modified Bessel function [24]. 
The introduced function is a statistical model for the distribution of orien-

tations of the crystals, approximately representing the physical reality. The 
acceptability of model assumptions about the independent normal dispersions 
of the lattice vectors being verified experimentally using the function expan-
sion by generalized spherical harmonics. 

2. Fourier image of the theoretical distribution of orientations proba-
bility. The components of the distribution of orientations of the crystals are 
formed by the convolution of the functions on the group of continuous rota-
tions. In Fourier space the convolution corresponds to the multiplication of 
matrices composed of spherical harmonics of functions to be convolved 
[100]: 

  
1

2 1
,

l

lmn lmk lkn
k l

l
W Q R   (1.4) 

 

 

 

2 1 ,

2 1 .

l
lmn mn

l
lmn mn

Q l Q T d

R l R T d

G

G

g g g

g g g

 
Calculation of spherical harmonics of the function R(g,E) , as shown by 

Eq. (1.2) reduces to averaging l
mnT g  over all E orientations of the expected 

type   0 0,,e g , appearing with the symmetrical rotations of crystal: 

 
2 1 .l

lmn mnR l T e
 

Fourier image of the function Q(g, ) is sought in the form of a product of 
two integrals: 

 

1 
cos

0

1
2

cos sin ,mn
lmn le P d

 

 

2 

2 2
cos

0 0

1
4 ²

.mi
mn

ne e d d
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Generalized Legendre function mn
lP t , where t = cos  with the exist-

ing limitation m   l is driven to a finite hypergeometric series provided that 
m  n [24]: 

 mn
lP t ( ) ( )

( ) ( ) ( )
1 ! !

! ! !
l m l n

m n l m l n
21

2

m n
t

 
2

0

1 1 ,
2 2

m n l m k

k
k

t t  

 

( ) ( )1 ,
! (

1
)1

k

k
k

kl m l m
m nk  

   0 1,   1 2 1 ,   ( ) 1 !.k ka a a a a a k k  

All emerging values of mn
lP t  are calculated using the formula [100]: 

 1 ,   ( ) ,) ( 1mn m n nm mn l m mn
l l l lP t P t P t P t  

 ( ) (1 ,   1 1 .)mn mn l
l mn l mnP P  

In the first integral we can substitute the expression of mn
lP t , where  

(1  t) k is resolved into components by Newton's binomial. Then lmn  de-
composes into a sum of integrals 

 
  

1

1

1
1

.k t
kZ t e dt

 
Calculate mn  it is easy by expanding the function under the integral on 

the modified Bessel functions [24]: 

 
2 cos

2 cos ,k
k

e I k
 

 
2 2 .mn k mk nk n mn

k
I I

 
By form of mn  immediately it is clear that in the Eq. (1.4) after summa-

tion will remain only spherical harmonics Qlmm. Their final formula takes the 
form 
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1

0 21

1

 

0

2

1
0 0

sh2 1
2

11 1 ,
2 2

lmm
m

i jl m m
j ki

ki j
i j k

Il
I

m i j
Z

j k

Q

 

 1

1

!1

!1 .

1

1

k
r

k

k

k
r

r
r

r

k
r

ke r
r

e rZ

 

Theoretical harmonics of mixed distribution of crystal orientations, of the 
form (1.1), acquire the exact mathematical expression: 

   

1

ˆ
s

lmn lmmW QB   (1.5) 

 
 0 0 0 0

1
2

cos cos 1 cos . l mmn mn
l lm n P P

E  
Angle brackets denote averaging over the cubic symmetry group. As a re-

sult, averaging spherical harmonics identically satisfy the conditions of invar-
iance of the texture function as to symmetric rotations of crystal. 

As it should be, the imaginary component of the Fourier coefficients 
 

1
2

ˆ ˆ ˆ
lmn lmn lmnW U iV  equal to zero, and 000

ˆ 1U . 
3. Generalized dispersion parameters of the orientations in the 

rhombic texture. A given on continuous rotation group the function 
f  has a one-valued decomposition into the function 0,mn  

with fixed m and n presented in mutually orthogonal subspaces the space of 
l

mnT g  [100]: 

 
, , 0, ,0 ,im in

mn
m n

f e e
 

 max ,
0, ,0 cos .mn

mn lmn l
l m n

W P
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According to Parseval's equality, 

 
2 2, , 0, ,0 ,( )mn

m n
f  

  

2 2

max ,

1
2 1

0, ,0 .mn lmn
l m n l

W  

Matrix  composed of elements of 
2

0, ,0mn  associated with the 
vector W of spherical harmonics, gives a generalized description of the het-
erogeneity of orientations distribution [65]. 

Norm of the matrix  is divided into three parts: 

 2
0 1 2 , , ,f  

2
0

22 2
1 00 00

2
00

0

22 2

0

2 00

,

0, ,0 ,

0, ,0 0, ,0 , , ,mn
m n

f

W

f f

W

f f   

here, f is the average of f  over all variables while ( )f  is the 
average by ,  at a given value of . 

The mean square of fluctuations of the density distribution of orientations 

 
2

1 2 , ,f f  

is a measure of closeness to the order:  = 0 at random orientations of the 
crystals and    in an ideal orientation order ( -shaped fluctuation). 

Parameters, which changing in the finite interval [0,1] 

 0 0 1

0 1 0 1 2

,   hkl uvws s  

characterize dispersion of the directions of the crystallographic vectors in 
plane deformed sample. 
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Fig. 1.1. Character of decreasing of the harmonics with an even (a) and odd 

(b) degree, depending on parameters of the texture function. The dashed lines 
for the components: (1) 110 [001]  ( 1 = 2 = 10); (2) 110 [112]   

( 1 = 2 = 50). The solid line for the mixed distribution 1 3  

(b) 

l 

Ŵ l 

9 23

0.2 
 
 
 
 
 
 
 
 
 
 
 

0.0 

(a) 

l 

Ŵ l 

4 24

0.4 
 
 
 
 
 
 
 
 
 
 
 

0.0 
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Fig. 1.2. Changing of of the generalized dispersion parameters of the 

orientations with an increase in the weight of sharp component of the texture 
function (parameters are the same as in Fig. 1.1). Solid lines by all harmonics 

of degree l  24 and dashed lines only by harmonics of even degree 

Disordering of the crystallographic planes (hkl) with respect to plane of 
deformation weakens the fluctuations by an angle  to the Z axis, which co-
incides with the normal to plane: 1 0 , 1hkls . 

Disordering of orientations of the crystallographic directions [uvw], lying 
in the plane of the deformation weakens the fluctuations by an angle of rota-
tion  around the Z axis: 2 0 , 1uvws . 

Generalized dispersion parameters of the orientations shkl and suvw depend 
on both coordinates and sharpness of the maxima of distribution density. Pa-
rameter shkl > suvw when K1 = K2, even under ordering of crystal planes of type 
(001). 

Taking as an example crystal orientations for texture of type silver, it can 
be observed decreasing of the averaged by modulus Fourier coefficients ˆ

l
W  

with the increasing their degree l (Fig. 1.1), and an effect of mixing intro-
duced distributions on the dispersion of orientations (Fig. 1.2). 

Statistical model of the distribution of orientations reveals the crystal 
structure of metals being plane deformed. Problem is to determine parameters 
of the texture function by data of harmonic analysis. 

2

shkl 
 

2

0.0                                0.25

0.96 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.90 

suvw 

0.0                                       0.25

0.22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.17 
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CHAPTER 2 
OPTIMAL DIFFRACTION EXPERIMENT  
FOR HARMONIC ANALYSIS OF THE TEXTURE FUNCTION 

Uncertainty in the estimations of harmonics of the texture function reach-
es a minimum when being measured the most informative points in recipro-
cal space of a polycrystal, and the model of regression experiment contains 
only the significant harmonics subject to existing dispersion of the orienta-
tions of crystals [64, 83]. 

§ 2.1. Imaging of Distribution  
of Crystals Orientations  

in the Diffraction Intensity Fluctuations 

Spherical harmonics of the texture function become the prototype of the 
Fourier representation of the observed intensity distribution of scattering by a 
polycrystal, from where regression estimates of desired harmonics to be ex-
cerpted. 

1. The scattering property of a polycrystal with the existing distribu-
tion of orientations. The reciprocal space of a polycrystalline sample con-
sists of concentric spheres formed by the rotation of the reciprocal crystal 
lattice around the lattice site taken as the zero. Symmetry of the reciprocal 
lattice coincides with the original lattice symmetry [98, 16]. 

From many spheres of the reciprocal space of crystals with cubic sym-
metry, there are three basic spheres described by the radius vectors of the 
crystal unit cell sites, that is [100], [110], [111]. 

Let r = (r, , ) is a point on sphere of the reciprocal space of radius 
2 2 2 r h k l , to which is guided the diffraction vector qHKL. Fluctua-

tion of the diffraction intensity J(r) at point r is related to the density of orien-
tations of crystallographic vectors hkl  in the direction of vector r, which 
depends on the texture function f(g). 

When the basis of a cubic crystal lattice coincides with the axes (X, Y, Z) 
of the external system of coordinates to make the vector [hkl] agree with the 
Z axis, it is need lattice rotation , ,hkl hkl hkl hklg . There hkl  and hkl  
are spherical coordinates of the vector [hkl] in the crystallographic basis, and 

hkl  is any angle of rotation around the [hkl]. So, for crystal with orientation 
g it is required the rotation of 1

hklg g . 
Therefore, crystals in which the normal to the plane (hkl) coincides with 

the Z axis have the orientation  
1 1 1( )hkl hklg g g g . The probability density 

of such orientations is 
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and with all possible rotations around the normal 
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The Fourier representation of the probability density distribution 
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using properties of generalized spherical functions [100, 16]: 

  
1 1 ,

l
l l l

mn hkl m n hkl
l

T T Tg g g g  *1l l
n hkl n hklT Tg g  

can be reduced to the following form: 

  
1

0
,

l

m

l l

hkl lmn hkl
l m l n l

n
l

f Wg g g g   (2.2) 

 

  
1
2

cos cos ,

cos .hkl hkl

im m m i
m l l

i n in
n hkl l hkl

e P P e

e P e

g

g
 

There is already provided invariance of  
1

hklf g g  to the reflection of the 
normal to the sample plane along which the Z axis is directed. 

In Equation (2.1) – (2.2) integrating with respect to hkl  produces -
function with . And summation over  give rise to the following probability 
density for the orientation of the vector [hkl] in the Z axis: 
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If crystallographic vector [hkl] is set as basis vector of the lattice, then 
function Phkl(g), where g = g( , , 0) shows the distribution density of ran-
dom orientations of vectors [hkl] by spherical coordinates  and  in coordi-
nates system of a sample designated (X, Y, Z). 

The scattering property of a polycrystal in the direction of the vector  
r = (rhkl, , ) is the average Phkl( , ) for all vectors of type hkl , appearing 
in the symmetry transformations of the crystal lattice, leaving unchanged 
diffraction pattern. Expression of ,( )

hklhkl r  (the angle brackets denote 
averaging over the rotation sphere of radius rhkl) becomes the equation for 
fluctuations of the scattering intensity on a polycrystal: 

 

            

0

0 0

ˆ ,         

cos cos        

0, 4, 6, ;  0, 2, 4, , ;  0, 4, 8, , .
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hkl

l l

lmn lmn
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nim m n i
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J W X

e P P e

l l n l

X

m

r r

r   (2.3) 

Harmonics of odd degree l have no effect on the fluctuations of the inten-
sity in reciprocal space a polycrystal and consequently, in principle, are im-
measurable. 

Equation (2.3) contains the formula of surface spherical harmonics of a 
pole densities J(r, , ), which was received by R. Roe [56]: 
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Relationships between different spherical functions are given in § 1.1. 
A surface spherical harmonic Slm(r) is a linear function of generalized 

spherical harmonics Wlmn of all orders n available for their degree l. To re-
cover Wlmn with all allowable n at the same (l, m), it is necessary to have 
number of harmonics Slm(r) for the different rhkl the higher, the higher l. 

For crystals with cubic lattice there is one (Wlm0 (l < 12)) or two (Wlm0 and 
Wlm4 (12  l < 24)) independent coefficient of the n-th order by number of 
invariants with respect to symmetrical lattice rotations (Table 1.1). And more 
there is an independent coefficient W000 being invariant with respect to all 
rotation of the three-dimensional space. 
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It follows that the necessary and sufficient number of spheres of different 
radius r, which must be present in the observation region of the reciprocal 
space of cubic crystals, is equal to two or three respectively specified limit of 
harmonics degree l < 24. 

If a single sphere of observations, even when l  10, coefficients Wlmn of 
nonzero degree become strongly correlated with the outweighing coefficient 
W000 and their estimations acquire large systematic errors [83]. 

2. The regression model of fluctuations of the scattering intensity at 
real texture of a polycrystal. In fact, the highest degree of significant coeffi-
cients of the texture function expansion is substantially limited. 

The condition of convergence of the Fourier series for the texture function 
f(g), which is given in § 1.1 can be written as 

 21

0

2 1 .
l l

lmn
l m l n l

l W  

It is known that a series 
0

q
l

l  converges for q > 1 and diverges for q 
 1 [37]. Consequently, if a series representing the f(g) generally converges, 

then 222 1 ll W , where W l denotes the average of all Wlmn  with fixed l, 
decreases not slower than l  (  > 0). 

Let us assume that W l measurement errors do not increase with l. The 
highest degree of reliable harmonics lmax will be determined by the inequality 
2 WlW , where W  denotes the error of the normalized coefficients W l. 

Assuming that 
1
2  2 2 12 ~lW l l , there is 

 
2ln 2

max 1 .  W
Wl e  

The dependence of the highest degree of significant coefficients Wlmn on 
the parameter , which is a measure of the imperfection of the crystallo-
graphic texture, is shown in Fig. 2.1. 

At small measurement errors W , a great role plays minor deviations 
from the ideal texture. With increasing W  the highest degree of reliable 
harmonics lmax immediately drops sharply, further continuing to fall under 
weakening of texture. 

When actually there is a mixed distribution of orientations, error W  in-
creases due to fluctuations of a random distribution of orientations with ag-
gregate of scattering crystals [74]. 
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Fig. 2.1. Degree of reliable harmonic of the texture function at situation of the 
orientations dispersion, and measurement errors: (1) W = 0.03; (2) W = 0.05 

In the infinite-dimensional space of spherical functions for observed the 
diffraction intensities we need to build the best regression model J(r,W), 
where the vector of parameters W = {Wlmn} contains the greatest number of 
reliable harmonics of the texture function. 

§ 2.2. Measurement of Harmonics of the Texture Function 
in Reciprocal Space of a Polycrystal 

Number received in the experiment information about the parameters of a 
linear regression model in advance can be maximized by constructing a good 
covariance matrix of estimates. 

1. The best linear regression estimate for the Fourier coefficients of 
the density distribution of orientations. An unbiased estimate for infinite-
dimensional true vector of harmonics Ŵ does not exist. The best of its biased 
estimates by regression model J(r,W), in the sense of the lowest possible 
standard deviations from Ŵ , can only be vector W with minimal norm 

t2W W W  (t-superscript denotes transpose). Limiting a bias in estimates 
of W is equivalent to their stabilization [49, 95]. 

Suppose that the vector of measurements J has the covariance matrix  
V =  I, where  is the variance of the measurements, I is unit (M M) ma-
trix, M is dimension of the vector J. The dimension of being estimated vector 
W, denoted N depends on the highest degree Fourier coefficients lmax in the 
regression equation J(r,W). 

ω 

lmax 

1 
2 

0.0 1.0  
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Optimal by accuracy and stability the estimate of *W*
lW  minimizes 

the functional 

 
t t ,Q W RW J RW J W W  

 
1,  ,   1,  ,  

,   , ,
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,   , ,
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lmn lmn
lmn

q M

R R X r

J J J r

R

J

 
Matrix R is constructed from basis functions of the Fourier representation 

(2.3), calculated at points of measurements; M  is the number of points on -

th a sphere, q is number of spheres; 1
,  1q M M M N q . 

Minimizing the norm of vector W, regulated by a parameter 0 <   1, 
leads to the choice of the most smooth regression function J(r,W) of all con-
sistent with the data of measurements J within their variance . The estimate 
of vector W becomes resistant to a random fluctuation of data sample [95]. 

In “regularized” regression the estimate is calculated by the formula 

 

* 1

1 1
,

Mq

W C R Jl
l ll

 
 

1 1
.

Mq

C R Rl l
ll ll

 

Here, 1Cll  are the elements of the inverse matrix 1C ; 'll  is Kronecker 
symbol (l = (l, m, n)). 

If agreed between each other an error of the regression model, variance of 
measurements and regularization parameter: tˆ ˆ / ²W W , then the esti-
mate W* has the lowest generalized variance, or the smallest determinant of 
the covariance matrix det VW, where VW < 2[Rt R] 1 [49]. 

The bias of estimate of vector W as a result of errors of the model J(r,W) 
is proportional to the matrix 1C . Thus, estimate with the smallest general-
ized variance 

 

1~ det C  has the smallest the bias. Therefore will be the low-
est possible standard deviations of *Wl  from the true values Ŵl . 

A measure of uncertainty in the estimation of *Wl  this is   log det WV . 
The amount of information obtained in the experiment is equal to reducing 
uncertainty. Measurement points    1, , Mr r  must be selected so as to 
minimize   log det WV . As shown in [2], the minimization of   log det WV  

or, equivalently, det WV  is equivalent to maximizing tdet WV RV R . 
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Diagonal elements of the matrix t
WRV R  when the covariance matrix of 

the measurement errors ²V I  are of the form ²d r , where 

 

1( ) ( )  ( ),d X C Xl ll l
l l

r r r
 

and they are an expression of the variance of estimates of the output vari-
able J(r,W) at the point r. 

Thus, when are measured those points    1, , Mr r , where the error of 
the predicted values of J(r,W) is the highest, the most amount of useful in-
formation is acquired [2]. 

2. Uniformly the most informative points of measurement in the re-
ciprocal space of a polycrystal. Experiment for estimation of parameters of 
inaccurate regression models can be optimized in the same way as if the ex-
act model. Although minimality of the highest error in the estimates of itself 
regression function will not be fulfilled [49]. 

For usual linear regression we have  

1²WV C . The criterion of exper-
iment optimality is min det VW. It is therefore necessary to either minimize 

 
1det C  or maximize det C, where C = [Rt R] is the information matrix. 

Matrix 1D C  is called a dispersion matrix of a design of experiment 
specified by       1 1, , ;  , ,M ME r r , where j is the weight of j-th 

measurement point, 1
1M

jj . The design E*, satisfying criterion of min-
imum det D, there is the D-optimal design. 

The problem of constructing the D-optimal design is solved by searching 
for the global extremum of the objective function is uniquely associated with 
the selected optimality criterion. 

Always there is a D-optimal design E* with a finite number of points 

 1 2,N M N N  

where N is the dimension of the vector of parameters of regression model 
(Kiefer, Fedorov). A necessary and sufficient condition for D-optimality of 
design E* is the equality of 

 *max ,d E Nr  

for all points of r in the designing area  (Kiefer and Wolfowitz) [49]. 
Best measurement points to estimate the harmonics of the texture 

function by the regression model of diffraction intensity fluctuations are 
found using the algorithm of accelerated search D-optimal designs [43]. 
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With accelerated method to the original plan E(i) (i = 0, 1, 2, ) is 
added at once many such points from the available measurement region 

, where d(r, E(i)) reaches a maximum. Weight j, which is assigned to 
point rj (j = 1, 2,  , M(i)) , depends on how d(r, E(i)) exceeds N. The 
points with low weight j gradually are superseded in an iterative process. 

Sequence of designs E(i) (i = 0, 1, 2, ) has being proven convergence 
to D-optimal design E*. In a practice, optimization is completed when 
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1 and 2 are as acceptable errors. 
Initial designs for the regression models J(r,W) with the specified dimen-

sion of the vector W included a large number of points    1, , Mr r , where 
M N , distributed randomly for the cubic crystals into their three basis 
spheres in the diffraction space. Designs [64] approaching to the D-optimal, 
contain the minimal number of points M = N with approximately equal 
weight 1

j M  (j = 1,  , M). 
In Figure 2.2 are shown examples of optimal arrangement of observations 

in the reciprocal space of a polycrystal at different highest degree of harmon-
ics of the texture function. Points    1, , Mr r  symmetrically duplicated on 
spheres for randomization of measurements. 

By optimizing almost uniformly the most informative observation points 
are disposed exactly at the necessary and sufficient number of spheres for 
cubic crystals. Density of points increases rapidly with the approach to the 
border of observations region in the reciprocal space. 

For approximation of pole figures {hkl} using the surface spherical har-
monics Ylm( , ) (q = 1) there is optimal the uniform arrangement of points 
over area of the sphere [78]. The result is as like obvious: for the harmonic 
analysis of the diffraction line is optimal uniform arrangement of points on 
the interval ( , ) [49] . Adequate representation of the function specified 
on a sphere requires a much smaller number of observation points because 
each point has already two coordinates. 

Now is uncovered how traditional measuring of pole figures are unsuc-
cessful for harmonic analysis even of themselves pole figures, and the more 
the texture function. On a regular grid of angles of the spherical coordinate 
occur gathering of points to a pole, furthermore with the increasing radius of 
a sphere in the reciprocal space the points average density decreases, instead 
of rising. 
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Fig. 2.2. Optimal arrangement of the measuring points for estimation of 
harmonics of the texture function: (a) lmax = 8, (b) lmax = 12 (   60 ) 

Very poorly organized measurements of pole figures have different and 
correlated errors. Into fitting coefficients an uncertainty which is generated by 
uncontrolled errors is so great that the true harmonics of the texture function 
actually do not known. Traditional experiment does not add information 
about texture function to an existing a priori.1 

When optimal experiment the most effective measurements for esti-
mation of harmonics of the texture function are performed with the high-
est reliability. 

3. Measurement data with the best cooperative covariance matrix. 
Criterion of measurement quality it is the independent identical error dis-
tribution with the mathematical expectation equal zero (systematic errors 
are absent). 

                                                      
1 Function approximation of pole figures by “Gaussian peaks” [89] further from 
physical reality, since does not already contain relating thereto a priori infor-
mation. 

 (110)  (111)  (100) 

(a) 

 (110)  (111)  (100) 

(b) 



28 

With optimal use of observation area  the data of measuring points 
   1, , Nr r  are independent. The scattering volumes, because of the diver-

gence of the beam of rays and the dispersion of wavelengths anywhere in the 
reciprocal space do not overlap. Changes in the size and shape of these scat-
tering volumes at different points of reciprocal space, if they are significantly 
smaller than lattice sites are separated by background, for the observed of 
scatter intensity distribution are inconsequential [10]. 

The measured intensity of diffraction on a polycrystal by nature is a ran-
dom variable with a Poisson composite distribution. Variance of normalized 
intensity mostly consists of relative fluctuations of random number of crys-
tals within effective scattering volume of a sample [34] and of the proportion 
of crystals at reflecting position under random distribution of orientations 
[83]. Fluctuations of the number of crystals, illuminated by a beam of rays, 
do not so much depend on the coordinates of points r in reciprocal space as 
fluctuations of the orientations distribution which inherent to a multi-
component texture [74]. 

Upon randomized procedure Poisson's variance of the measured quantity 
is part of a sample variance. 

Randomization prevents from systematic distortion of data due to instru-
ment drift or inaccuracy the geometry of diffraction with displacement of 
sample plane. The effect of these factors, as well as errors in determining the 
axes of the sample symmetry turned into a random. 

The algorithm of the measuring control in optimal experiment [80]: 
1. Choose a random point from set of the design points    1, , Nr r . 
2. Set the measuring parameters of point rj: interval of angles of reflection 

2 (rhkl) to measure the whole intensity of above background; the angles of 
inclination and rotation of a sample relative to the reflected beam namely  = 

 and  = . 
3. Measure the intensity of reflection integrated when the counter moving 

in the interval 2 (rhkl), and of background on the ends of the interval. 
4. Duplicate the measuring of point rj with symmetrical rotations of a 

sample: ( 1)i  + k , where (i, k) are take random integer values (0, 1). 
5. Repeat steps 1 – 4 until all of N points in the design will be measured. 
6. Replace a sample and repeat entire the measuring program. 
Defects of the "slit device" that distort the specified coordinates of points 

(r1,  , rN) should be removed [23]. 
Optimization of time division when measuring the scattering intensity: An 

estimate of variance of the weighted average J  of all measured relative 

intensities on -th sphere when the total measuring time T  is 
1

2s J T

. From the point of view of the uniformity Poisson's variances the best divi-
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sion of total measuring time T T  on different spheres  will that in 

which constJ T .. Minimal required measuring time T  is determined 

by the allowable value of variance 2 410s . 
Getting information from weak reflections will require more time to 

measuring. 
By the condition of minimizing the error of background subtraction, time 

of its measuring under the total time T  should make up, as shown in [105], 

 
 ,

1bT T
 

where  is the relative level of the background at the -th sphere. The 
higher level of background, the more time required for its measuring. 

The average time of one measuring on each of two samples 
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Here, N  is number of measuring points at the -th sphere; p is number of 
replicate measuring upon symmetric rotation of a sample. 

Statistical estimation of primary experimental data: Data for harmonic 
analysis of the texture function this is measured normalized intensities from 
the level of background namely Jj,k (j = 1,  , N (k = 1,  , p)). Normaliza-
tion is performed by an average intensity above background measured on the 
reference sample with the nearly randomly oriented crystals. For each -th 
sphere on the reference sample is measured large number of points with rapid 
rotation around the normal to the plane of a sample. The variance of the mean 
intensity is negligible compared to the variance at one point. 

Estimates of sample mean values of j jJ J r  and variances of 2
js  are 

calculated with weight of wk when the same number p of repeated measuring 
of each j-th point: 
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Measuring in the conditions of randomization increases a variation in da-
ta. Repeated experiments make improving the accuracy of sample means. 

When large expected values of J(rj) the Poisson’s their distribution 
comes near to the normal one. To test the homogeneity of variance of 
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measurements J(rj) by sample estimate of 2
js  (j = 1,  , N) can be used 

approximate criterion 
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which has an approximately ²-distribution with (N  1) degrees of free-

dom [31]. 
A check on study samples does not reject the assumption of statistical 

homogeneity of standard deviations in the region of observations. Therefore, 
the total variance of measurements can be estimated by pair differences of 
data for two samples [62]: 
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Two series of independent measuring at each point of the design 
   1, , Nr r  give the vector of observations J of dimension 2N sufficient for 

simultaneous estimation of regression model J(r,W) and checking its agree-
ment with the data. The vector J has covariance matrix of errors distribution 
approaching to that in which will be a minimal volume of the dispersion el-
lipsoid of the estimates as  det WV  [2]. 

4. Robust model of the regression experiment for measurement of 
harmonics of the texture function. Degree harmonics of the texture func-
tion included in the regression model should be not less than required under 
the occurring sharpness of texture, but also not greater than available to 
measuring at existing experimental accuracy. 

Economical of mathematical model by the number of estimated parame-
ters is the condition of accuracy and stability of estimates [5]. The principle 
of economy is consistent with the requirement of a minimum norm of the 
vector of parameters for resistance to inaccuracies of model and data [95]. 

From the class of linear regression models J(r,W) for which 

 2 t, Tr ,J r W J V  

where  is the vector of the model errors in observation points, V is covar-
iance matrix of errors of the measurements J, it is necessary to choose model 
of the smallest order of N. It is in such model the vector of parameters will 
have minimal norm 2W . 

Determinant of the dispersion matrix det D  increases with its dimension 
(N N). To limit the generalized variance of W estimate when increasing di-
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mension of N, growth of det D  should be compensated by a decrease of the 
measurement variance . Otherwise, the increase in uncertainty in the quick-
growing value of 2 det D  leads to the degeneration of the regression model, 
there does not remain reliable no single parameter. 

Vector e of the bias in estimate of regression parameters of W with covar-
iance matrix VW satisfies equation 

   

t 1 t ² .We V e  

For the regression model, which comparable in accuracy with the data, so 
that the decreasing of errors  through rise the number of Fourier coefficients 
is accompanied by a decrease of measurement errors , value t ²  is 
approximately constant. In these circumstances the covariance matrix of es-
timate VW and the vector of bias e being minimized in concert. 

Before the experiment, neither the sharpness of texture, which determines 
the rate of decreasing of the harmonics nor variance of measurements ² is 
not known. Choosing economical model J(r,W), where only parameters be-
ing estimated as needed for agreement with the data, naturally to start with 
the lower of highest-degree of harmonics lmax which defines the model order 
of N (Table 1.2). 

Rising of lmax makes sense only until the accuracy of the approximation of 
observations J, estimated by the mean square residual deviations from 
J(r,W) longer is no improving. If agreement with data when checking on the 
F-criterion with a given confidence probability P is not rejected, found esti-
mates of W can be considered optimal. 

At the beginning of the study to choose the best regression model it will 
be good practice to carry out the experiment with additional points to D-
optimal design in the pole of spheres included into the observations area, to 
do the probability of a mistake in decision on the adequacy of the model as 
little as possible. 

Sequential strategy in practice provides optimum choice of a regression 
model, parameters of which are the most accurately measured harmonics of 
the texture function. 

§ 2.3. Practical Application of the Methods for Measuring 
the Orientation Distribution of Crystals 

The actual quality of estimates of the Fourier coefficients of the orienta-
tion distribution density with the existing crystallographic texture is revealed 
by testing. 

1. A limited class of regression models for practical texture analysis. 
To model of the regression experiment should be immediately excluded prac-
tically inaccessible under the achievable measuring accuracy, the highest 
terms of the Fourier series (2.3). 
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Experience shows that to describe the fluctuations of the diffraction inten-
sity with accuracy not below than the one with which they can be measured, 
absolutely are sufficient Fourier coefficients Wlmn not more than tenth degree. 
When l  10 there is independently only Wlmn of the order of n = 0. Moreover, 
on the invariance condition of output quantity with respect to symmetric rota-
tions in the plane of a sample, the imaginary component of the Fourier coef-
ficients of  

1
2lmn lmn lmnW U iV  equal to zero. 

Applicable in practice model of the regression experiment takes the form 
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Coefficients Ulm0 of order m = 0 are entered with the weight of 1
2 . 

The function l hklH r  consists of Legendre polynomials cosl hklP : 
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Coefficients Kl contain numeric constants which relate spherical harmon-

ics with cubic symmetry of crystals: 
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angle brackets, as before, denote averaging over the symmetry group. 
2. Validating of the estimation accuracy of harmonics of the texture 

function using simulation experiments. By modeling of measurements 
in the reciprocal space of a polycrystal can be seen the deviation of esti-
mates from true harmonics of the texture function and ascertain how af-
fect the quality of estimates the option of model of the regression experi-
ment, arrangement of the points in the observations area and measure-
ment variance [83]. 
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To imitative harmonic analysis of the texture function was accepted a 
theoretical probability distribution of orientations with the same components 
as in Fig. 1.1: 

 
Component  Type Weight Parameters 

  = 1  {110} 100    = 0.85  1 = 2 = 10 
  = 2  {110} 112    = 0.15  1 = 2 = 50 
 
Data of texture measurements at points of D-optimal design    1, , Nr r  

are simulated by normally distributed a random variables with mathematical 
expectation of Ĵ r  and covariance matrix V =  I, where  is variance of 
measurement at a point, I is unit (N  N) matrix, N is the number of measuring 
points. 

Theoretical the pole densities of Ĵ r  for generating of data are calcu-

lated using harmonics of the texture function ˆ
lmnU  (1.5). Approximation is 

sufficiently accurate: the calculated values of Ĵ r  are stable up to the sixth 

decimal place at all points of observations    1, , Nr r  under sequential 
increase the highest-degree of harmonics 24  lmax  26. 

Each of simulation experiment produces a vector of observations J of 
dimension 2N. From the data obtained are calculated the best estimates of 
parameter vector U of the regression model (2.4) as described in § 2.2. 
Experiments are repeated many times to retrieve sampling of the meas-
ured vectors U of the given volume M. 

The true mean square error of estimates of the Fourier coefficients Ulm0: 
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it is summation of their variation relative to the average of 0lmU  and of 
deviation of the average 0lmU  from the true value 0

ˆ
lmU . 

Table 2.1 shows the estimates of errors over random samples of size  
M = 60 when variance of the simulation measurements of 2  = 0.01. 

Standard deviations of the measured normalized harmonics Ulm0 from the 
true values 0

ˆ
lmU  are compared on two models of the regression experiment 

with the highest degree of harmonics lmax = 8 or 10. 
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Table 2.1. 
Estimates of harmonics of the texture function  

by data of simulation experiments 
Indexes 

l m n 
True value 

 0
ˆ

lmU  
The sample mean of 

estimates 0lmU  
Standard deviation from 

true value 0
ˆ

lmU  
lmax = 8 lmax = 10 lmax = 8 lmax = 10 

4 0 0 0.6919 0.8674 0.8004 0.2034 0.1302
4 2 0 2.8390 2.7454 2.8627 0.1247 0.1899
4 4 0  1.2260 1.0958 1.0105 0.1465 0.2265
6 0 0 0.2486 0.1989 0.2065 0.0639 0.0640
6 2 0  0.1709 0.1498 0.1512 0.0249 0.0264
6 4 0  0.2023 0.1809 0.1666 0.0256 0.0395
6 6 0  0.1653 0.1345 0.1713 0.0444 0.0314
8 0 0  0.2788 0.1219 0.4373 0.4232 0.3849
8 2 0  0.2631 0.0779 0.0751 0.3533 0.2448
8 4 0 0.1399 0.0043 0.0610 0.1466 0.2122
8 6 0  0.1787 0.2494 0.2708 0.4336 0.4580
8 8 0  0.2056 0.0593 0.0732 0.3054 0.4905
10 0 0  0.0056 0.0745 0.0988
10 2 0  0.0369 0.0615 0.0495
10 4 0  0.1128 0.1219 0.2546
10 6 0  0.1722 0.0814 0.1071
10 8 0  0.0032 0.0007 0.0391
10 10 0  0.2067 0.1463 0.0860

 
With increasing the dimension of the vector of regression parameters U 

mean square deviation from the measurement data remains at the level of 
their variance ², while the uncertainty and instability of the parameter esti-
mates is rising rapidly. The degree of instability is seen in variations of max-
imum relative error 0

ˆˆ /lm lmU  on random samples of data, which are regis-
tered in Table 2.2. 

Table 2.2. 
Fluctuations of the maximum errors in the estimates  

of harmonics over repeated samples of simulation measurements data 
The 

sample 
number 

The relative standard 
deviation 

The relative bias of sample mean 

lmax = 8 lmax=10 lmax = 8 lmax = 10 
1 2.29 15.3 2.40 10,1 
2 2.29 16.7 2.32 10,6 
3 2.36 17.7 2.33 12,3 
4 2.29 16.4 2.33 10,4 
5 2.34 12.4 2.35 6,5 

Error of the model with the lmax = 8 is more, and it caused the bias lower-
ing estimates of higher harmonics Ulm0. But when extending the Fourier se-
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ries to lmax = 10 covariance matrix of multidimensional regression has in-
creased so much that the more great opposite bias appeared generating insta-
bility. 

Figure 2.3 shows the affect variance of measuring of ² on the errors of 
estimates for the best by accuracy and stability regression model with the  
lmax = 8. 

Denoted as rl the relative standard deviations of the average by modulus 
harmonics lU  from the true values ˆ

l
U , depending on their degree of l 

were calculated by the total sample of size M =300. 
When reducing the error of primary data the variance and bias of the 

measured harmonics are decreased in concert. Due to the optimal arrange-
ment of observation points in reciprocal space of a polycrystal the effect of 
improving the accuracy of measurements becomes the greatest [83]. 

 

Fig. 2.3. Standard deviations of the estimated harmonics with respect  
to the true values under different variance of simulation measurements:  

(1)  ² = 0.01; (2)  ² = 0.04.  
Dashed line for deviations from the sample means 
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Simulation experiments gave solid confirmation of the principles of de-
termining the harmonics of the texture function as accurately as possible. 

3. Tests of the methods of optimal measurement of crystallographic 
texture on low-carbon steel specimens. In criterion of optimality experi-
ment for textural analysis of low-carbon steel will have to lay the reduction of 
experiment value at the expense of some loss of efficiency. 

At bcc crystal lattice the sphere, covering the entire volume of the obser-
vations area in reciprocal space, is hard available to measuring. X-ray analy-
sis of the reflection {222} greatly complicates the experiment. Abandoning 
too expensive information, we limit the observations area on sphere with re-
ciprocal lattice site of {110}. 

When limited the observations area the most preferred by largest radius r 
sphere is formed in the rotation of the radius-vector ½ ½ 1  of bcc reciprocal 
lattice. Here will to be scanning the reflection {112}. 

Tables with points coordinates to D-optimum designs of experiment, de-
signed for practical applications, are available in the automated system to 
research of crystallographic texture presented in Ch. 5. 

Experimental studies of crystallographic texture of a sheet of low-
carbon steel 08Yu with deformation extent of 72% were performed by 
D.A. Kozlov [38]. 

For preliminary harmonic analysis of pole figures X-ray measuring was 
carried out in Fe–K  radiation [78, 80]. Mainly experiment, when being 
measured harmonics of the texture function, Co–K  radiation used. There 
consistently is chosen the slits system and scan angle range of 2 (rhkl). The 
average measuring time of one point is 110 40 t s  and 112 100 .t s  As 
reference for determining the average intensities of reflections {110} and 
{112} is suitable specimen of steel 08Yu in weakly deformed state after hot 
rolling at 1200 C. Implementation the textural experiment corresponds to the 
technology [4]. 

The best by accuracy and stability model of the regression experiment to 
study thin metal sheet with cubic symmetry of the crystal, as follows from 
experience, contains the vector of harmonics of texture function with the 
highest degree of lmax = 8 whose dimension is N = 13. When bcc lattice of 
crystals, the number of observation points by D-optimal design of experiment 
is divided into N{110} = 10 and N{112} = 3. 

Measured harmonics of the texture function of low-carbon steel are pre-
sented in Table 2.3. For chosen regression model an agreement with observa-
tions in statistical test by F-criterion is not rejected. According to t-test by 
available estimation of the covariance matrix of errors the harmonics are sig-
nificant with probability P = 0.99. 

Optimum experiment on accuracy of harmonics measurement gives and 
all pole figures that predicted from harmonics with the most reliability, as 
confirmed Fig. 2.4. 
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Table 2.3. 
Measured harmonics of the texture function  

in the specimen of thin-sheet low-carbon steel 
 
l 

Coefficients 0 000lmU U   
 m = 0 m = 2 m = 4 m = 6 m = 8 

 4 0.9937 
0.1461 

2.1024 
0.0908 

1,6157 
0.1272 

  

 6  1.2221 
0.0243 

0.6613 
0.0151 

 0.2946 
0.0148 

0.9322 
0.0794 

 

 8 1.3656 
0.0779 

 0.7659 
0.0557 

 0.1962 
0.0495 

1.1848 
0.0923 

 0.8696 
0.1259 

 

 

Fig. 2.4. The pole figures of the thin-sheet low-carbon steel  
when predicting by measured harmonics of the texture function  

(arrow shows the rolling direction) 

Experimental verification provides the conclusion about the good quality 
of received harmonics of the texture function. Further in the Ch. 4 and Ch. 5 
there is evidence of their successful use for determination of the textural 
components and study of the anisotropy of plasticity of metal sheet. 

(111) (100) 
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CHAPTER 3 
DETERMINATION OF THE PARAMETERS  
OF THE TEXTURE FUNCTION BY MEASURED HARMONICS 

There has been proved by experience that the statistical model of the 
crystal structure of deformed metals corresponds to reality. Method of the 
model estimation identifies the type of resolvable components of texture, 
their shape and quantitative ratio [66, 71]. 

§ 3.1. Statistical Estimation of a Mixed Distribution  
of the Orientations of Crystals 

The essence of the problem is to present real crystallographic texture 
by components of the theoretical probability distribution of orientations. 

1. Global search for the optimum texture function of investigated 
object. The number of separable peaks of probability density of orienta-
tions in general is limited by the dimension of the vector of observations U. 
When adequacy the model f(g,B) in form (1.1) with the least components 
number of s it has advantages in accuracy and stability of the parameter 
estimates of B [5]. 

The most significant property of estimates of the physical parameters 
is the statistical validity. Only then predictions are approaching to the 
truth with the improvement of the accuracy of original data. Requires at 
least achieve stability and validity in estimating the parameters of the tex-
ture function f(g,B). 

The method of maximum likelihood make it possible to find in the al-
lowable range of parameters B an estimate with the lowest determinant of 
the covariance matrix VB satisfying the proposed requirements [105]. 

Maximizing the likelihood presumably normal data sampling with un-
known covariance matrix is reduced to finding the minimum of the objec-
tive function [2]: 

 
 

t

1
2

logdet ,

ˆ ˆ .

L B M B

M B U U B U U B
 

Here, M is the matrix of the moments of deviations of the observed vector 
of normalized spherical harmonics U from the expected theoretical vector 
Û B  (1.5). 

To reduce the sensitivity of the objective function of the method of max-
imum likelihood to disturbance of the normal distribution of errors, it being 
minimized simultaneously with the stabilizing functional [95]: 
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2ˆ| min .F LB B U B

 
Using the coefficient of 0 <   1, which should slowly decrease with ap-

proach to the optimum, there can choose the vector Û B  with the smallest 
norm out of all which are consistent with the data U. 

In global optimization are applied discrete and parametric methods. 
Simple types of possible textural components {hkl} uvw  is detected 

in the qualitative analysis of pole figures, which can always be construct-
ed for the same observations of U. Search the textural components for a 
minimum of functional F(B) can be performed by exhausting all combi-
nations the s types of permissible orientations that constitute the set of 

  . 
Fourier coefficients of a discrete distribution of the texture highs are 

calculated originally for crystallographic orientation (001)[100] then are 
averaged over symmetric rotations of crystal. When choosing any type of 
orientations {hkl} uvw , Fourier coefficients are transformed by turning 
crystal lattice to the nearest (hkl)[uvw]. 

Discrete search the most probable orientations E  is performed with ad-
justed parts by weight  and the ordering parameters  (  = 1,  , s). 

It is useful to introduce the vector of normalized parameters b whose 
components have the same interval of acceptable values (0, 1): 

 

   

( )
0

( ) ( )
1 1

( ) ( )
2 2

,

,  .( 1,  , )

b

b s

b
 

Since the weight fractions of ( 1,  , s) are related, the vector b is of the 
dimension 3s  1. 

Selection of interval  , , which limits the minimum and maximum 
value of the order parameters, is provided the formula of the average cosine 
of angles of the normal random deviations of vectors from the expected di-
rection: 1cos coth [19]. 

Value of 1 cos  outside the range of 4 <  < 60 behaves asymp-
totically with 0  and . If remain within the specified range, it is 
prevented the strong instability in estimating the parameters of . 
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The points in discrete searching of suitable parameters are the vertices of 
the hypercube, the total number of which is equal to 23s. The coordinates of 
the vertices this is vector-line of dimension of 3s. Its elements are the bound-
aries of the interval of restrictions. 

The lowest value of F(B) is sought near the vertices of hypercube with 
random offsets to inside. Here, it is used an asymptotic representation of the 
extreme values in a sample of uniform distribution on interval [0, 1]: 

 1 ;,  z z
k k  

k  is a size of imaginary sample close of 10; z is a random variable with a 
distribution density p(z) = e z [25]. 

Repeating the procedure of discrete optimization with added a random-
ness enable choose the best of several starting points of B0 to search the esti-
mate of the structural parameters b* under the found most probable orienta-
tions with coordinates E*. 

The minimizing sequence of vectors b(i), which are elements of B(i), is 
calculated by formula of Newton. To approximate the inverse matrix of the 
second derivatives of the objective function of 1H B  that appears in the 
Newton formula it is used one of the methods of variable metric which is 
considered the most effective. Sequence of approximate matrices ( )1 iH B  

(i = 0, 1, 2, ) converges to the exact 1 *H B , and if agreed the model 
and data, it will be an approximation of the covariance matrix of the parame-
ters 1 *

BV H B [2]. 
Matrix of the moments of residual deviations M(B*) adjusted for bias by 

 gives an estimate of the covariance matrix of measurement, that is 
*

UV M B  [2]. Correction 1
1 6 1s N  takes into account 

(6s  1) fitting parameters relating to N equations of the model. The number 
of equations is equal to the dimension of the vector of observations U. Pa-
rameters include Euler coordinates of the most probable orientations. 

It is necessary to test the hypothesis that UV  corresponds to the expected 
covariance matrix ˆ

UV  of distribution of errors using estimated matrix VU 
from regression analysis of the measurements. Statistical criterion  to com-
pare the (N N) covariance matrices of multivariate samples of normal distri-
bution was calculated in [36]. 

Only the diagonal elements of matrix UV  can be estimated from one 
multidimensional observation U, so taken approximate criterion 
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where kkv  and kkv  respectively denote the diagonal elements of matrices 

UV  and VU. The asymptotic distribution of  is the ² with the number of 
degrees of freedom equal to the number of unrelated elements of the covari-
ance matrix precisely q = N (N + 1)/2 [2]. 

Criterion , assuming a normal distribution of errors and the large sam-
ples for estimation of matrices, in existing situation is applicable only as an 
indicative for rejecting obviously bad decisions when it repeatedly surpasses 
the critical value to the asymptotic distribution. 

There being chosen a model with a well-defined parameters B* which 
to be more than three times greater than their errors as estimated by co-
variance matrix VB. Then at any law distribution of errors, the parameters 
are significant with probability of P > 0.9 (Chebyshev inequality [37]). 
Allowability of the parameters B* qualitatively is controlled on pole fig-
ures predicted with model harmonics of *Û B  compared to the forecast 
of measured harmonics of U. 

As an acceptable approximation to the true distribution of random orien-
tations of crystals, it is taken an allowable decision of optimization problem, 
stably repeating within the errors. So it must be, if the decision satisfies the 
principle of maximum likelihood. 

2. Representation of the orientations distribution density in a random 
aggregate of crystals. Constructed model is studied by making the probabil-
istic experiments. There is simulating test on specimen that showing a ran-
dom distribution of orientations in ensembles of crystals. 

Empirical distribution is a statistical analogue of the mixed distribution 
obtained by the convolution of functions from Eq. (1.2), (1.3): 

 
 

1

1

, , .
s

f Qg B e g K
 

Angle brackets denote averaging over all ordered orientations of the same 
type appearing under rotations around the axes of symmetry of the crystal. 

Let g g  is the observed orientation of the crystal in the exter-
nal coordinate system, coinciding with the axes of the rhombic symmetry of a 
specimen and e g  is one of its expected orientations 
(hkl)[uvw]. Let us introduce the vector of normalized random deviations of 
crystallographic vectors relative to the most probable directions: 
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hkl

uvw  

0

0 0

 1 cos ,

1 cos .
hkl

uvw  
Independent random variables 1 and 2 follow approximately ²- distri-

bution with two degrees of freedom [103]. 
Consequently, for each distribution of orientations with the vector of pa-

rameters , there exists a vectorial random field   with independent 
components of 1 1,hkl , 2 2,uvw . To sample functions of a ran-

dom field of     are made correspond the probability densities of 

  1 , , MQ QX X  in the form of converted expression from Eq. (1.3): 

 

 
 

1 1 22
2

11

1 0 2sh
.e e

I
Q e

 
Values of the random variables 1 and 2, having a distribution density 

 21

2
( )p e , are generated by the formula 2log  [11], where  is 

a random variable with a uniform distribution on the interval [0, 1]. 
The set of   1 , , MQ QX X  simulates the empirical distribution of 

random orientations of crystals. Two-dimensional graphic image of empirical 
distribution represents the shape of texture components. 

§ 3.2. Example Identifying the Texture Components 
in a Thin Metal Sheet 

Method of statistical estimation of the distribution of crystal orientations 
was tested on specimen of technically pure copper deformed at 90%. Original 
data are harmonics of the texture function which have been measured by 
D.A. Kozlov by optimal methods (§ 2.2 and § 2.3). 

Using theoretical model of spherical harmonics which are measured, it is 
required determine parameters of the orientation ordering in the crystallo-
graphic texture of specimen. 

For discrete search of optimal structure is taken a subset of the revealed 
orientations on neutron diffraction pole figure of copper with the deformation 
of 96.1% [29]. 

Being agreed with the observed harmonics U the allowable decisions of 
optimization problem B* are considered as the measured values of the param-
eters of the orientations distribution f(g,B). 
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Table 3.1. 
Estimates of the components of crystallographic texture  

of a thin sheet of copper 
Most probable 

orientation 
The weight 
fractions  
of texture 

components 

Parameters of the orientations 
distribution 

 {hkl}  uvw  

{112} 111   0.84  0.01  6.2  1.0  5.2  1.0 
{110} 112   0.16  0.01 51.4  5.2 50.1  6.0 

 
Table 3.2. 

Validation of the texture function  
of the test specimen from measurement data 

Indexes 
l m n  

Measured 
harmonics 

Ulmn 

Predicted 
harmonics 

 ˆ
lmnU  

Residual 
deviation 

Prediction 
error 

Measurement 
error 

4 0 0 0.2243 0.2635  0.0392 0.0732 0.0686 
4 2 0 0.0776 0.0264 0.0512 0.0677 0.0429 
4 4 0 0.7297 0.7255 0.0041 0.0634 0.0521 
6 0 0 0.4077 0.2067 0.2010 0.0319 0.0241 
6 2 0  0.3001  0.1036  0.1965 0.0185 0.0109 
6 4 0 0.3033 0.2506 0.0527 0.0240 0.0104 
6 6 0 0.3119 0.1803 0.1316 0.0273 0.0193 
8 0 0 0.3499  0.3020 0.6519 0.0955 0.0908 
8 2 0  0.6558  0.0879  0.5679 0.0561 0.0553 
8 4 0 0.6482 0.4870 0.1612 0.0567 0.0350 
8 6 0  1.3260  0.5029  0.8231 0.0607 0.0360 
8 8 0 0.1735  0.0746 0.2481 0.1039 0.1037 

 
Table 3.1 shows the average estimates of parameters over sample of 

measurements {Bk
*} (k = 1,  , 7). Standard deviations of sample estimates 

are within the dispersion of their errors estimated by covariance matrix VB. 
The model harmonics of *Û B  are agreed with the measured U, that being 
checked by Table 3.2. 

Figure 3.1 shows that model harmonics *Û B  of the texture function of 
thin copper sheet reproduce the classical kind of pole figure (111) [29]. 

Such the same the most likely orientations of {112} 111  and {110} 112  
which are identified by means of discrete optimization, are found when ana-
lyzing the pole densities calculated from the measured harmonics of the tex-
ture function U [84]. 
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Fig. 3.1. Predicted the pole figure of (111) for specimen of copper (a)  
by the measured harmonics and (b) by model of the orientations distribution 

Let  is a joint pole density of any pair of orthogonal vectors, such that 
{HKL}  Z, UVW   X. Sample to be formed of predicted pole densities for all 
feasible pairs with a simple indexes of {HKL} UVW  by constructing a varia-
tion row of 1 2 q  (q is number of members) can be divided 
into statistically homogeneous groups based on the criterion of least signifi-
cant differences [62]: 

 
    ( ) ( ) ( )

2 2
1 1( )    1, 2( ), .Pt  

Here, there are involved the variances of sample members , their esti-
mates are calculated from the covariance matrix VU of measured harmonics 
U, as well the percentage points for the t-distribution with N degrees of free-
dom according to the dimension of the vector U. Specified confidence proba-
bility is P = 0.99. 

If a jump is reliably identified on variation row, the type of the orienta-
tions density fluctuation is recognized in principle. Last element in variation 
row it is a possible fluctuations maximum. 

Empirical distribution of orientations of the crystals in a specimen of a 
thin sheet of copper derived by simulation is shown in Fig. 3.2. 

Graphical presentation of empirical distribution runs in a form of two-
dimensional bar chart. The width of the columns corresponds to 95% 
ranges of uncertainty of orientations at existing variance of the estimates 
of parameters: 

( ) (b) 



45 

 

1

1

,hkl

hkl  

2

2

.uvw

uvw  
Height of the columns randomly varies in line with presumably nor-

mal errors of the weight fractions of the texture components of { }. For 
graphical presentation sample size of 500 proved to be optimal when ex-
amined [84]. 

In Figure 3.2 the origin of Cartesian oblique coordinates of   is 

aligned with the crystallographic orientation of type 112 || Z , |111 | X  
(Z is normal to the specimen plane, X is rolling direction); 1 cos , 

1 cos ;  and  are angles of deviations about X and Z within 45 . 
Confidence intervals of deviations of the ordered crystallographic vec-

tors from the most probable directions, just as empirical distribution of 
the orientations are built on the basis of -distribution for normalized 
random variables of . 

 

Fig. 3.2. Distribution of the orientations of a random ensemble of crystals  
in thin sheet of copper: (1) {112} 111 ; (2) {110} 112  

  

 

   

 f  
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Table 3.3. 
Intervals of the angles of the crystallographic planes  
dispersion relative to plane of the copper sheet [deg] 

{hkl} Confidence level 
0.50 0.80 0.90 0.95 0.99 

{112} 27  4 42  7 51  8 59  9 75  12 
{110} 9  1 14  1 17  2 20  2 24  2 
 

 

Fig. 3.3. Deviations of the crystallographic vectors uvw   
from rolling direction of the copper sheet. Reliability  

of the border width of the intervals of 95% 

As examples for the identified texture of a specimen of copper the 
confidence intervals of the orientations dispersion relative to the plane of 
the sheet are shown in Table 3.3, and others in the itself plane of the sheet 
are shown graphically in Fig. 3.3. 

Texture analysis using the method of separation of a mixed distribu-
tion of the orientations of crystals into components gives rise to the relia-
ble representation of the orientation ordering under rhombic texture of 
metal sheet. 
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CHAPTER 4 
STABILITY OF RHOMBIC TEXTURE  
AND CREATED BY IT ANISOTROPY 

In a non-equilibrium polycrystalline system the plastic flow is interrelated 
with the kinetics of the orientations distribution of crystals. Movement of 
micro-plastic states of the system, caused by mechanical action, is regulated 
by the anisotropic hardening of differently oriented crystals and the relaxation 
of stresses in polycrystalline environment. Dynamic model of a deforming 
polycrystalline system is designed to study the macroscopic anisotropy inher-
ent in crystallographic texture [76 77]. 

§ 4.1. Evolution of the Distribution of the Orientations  
of Crystals in the Process of Plastic Deformation 

Kinetic equation for the distribution of the orientations of crystals reveals 
the natural qualities of crystallographic texture. In condition of existing 
symmetry the texture mobility is limited. 

1. Probability distribution of the orientations of crystals in a non-
equilibrium polycrystalline system. For any changes of probability distribu-
tion of crystallographic orientations f(g) must be satisfied the condition of 
conservation of probability 

 
 0.f d

t
G

g g
 

Consider the continuity equation for the probability density 

 
div ,f

t
r q r

 
where r is the rotating vector of three-dimensional Euclidean space, 

which is made correspond to the orientation of crystal g (rotation of vector 
can be described as a rotation of coordinate basis in which it is presented). 

The current vector of probability 

 

d
dt

fq r r r
 

should be constructed so that the following equality holds 

 
  ( ) ( ) ( )div  0.( )

V V V S

f d f d d d
t t

r r r r q r r q r s
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According to the equation of the transformation of vectors r when a con-
tinuous three-dimensional rotation with angular velocity , we have 

fq r r r  [37]. Vectorial element of surface ds is directed along 

r, so 0dq r s  that is the probability flux through bounding the vol-
ume V the surface S is missing, which proves the conservation of the orienta-
tions probability. 

Thus, the rate of change of the probability density of the orientations of 
crystals is described by the equation 

 
,f f

t
r r r r

 

 

1

2

3

.
y z z y J
z x x z J
x y y x J

r

 
Components of the vector [r  ] are explicit differential expression of in-

finitesimal operators corresponding one-parameter subgroup of rotations 
around the coordinate axes (x, y, z) [16]. 

Presentation of the operators in the Euler angles of ( , , ) of the rota-
tion vector r follow [100]: 

 
1

1 cos sin ctg cos ,
sin

J
i  

 
2

1 sin cos ctg sin ,
sin

J
i  

 
3

1 .J
i  

Introducing the vector operator of the 1 2 3J J JJ i j k , let us 
move to a more convenient form of the equation, to which must satisfy 
the probability distribution f(g): 

 .f f
t

g J g g   (4.1) 
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This phenomenological equation describing the evolution of the mac-
roscopic function of the orientations distribution1, it is required relate 
with irreversible micro-processes proceeding in the system under study. 

2. Phenomenological description of the micro-plastic states of a poly-
crystalline system. State of a deforming polycrystalline system can imagine 
as statistical ensemble of micro-plastic states of randomly oriented crystals. 
Microstates are defined by the values of the tensor the plastic strain rate 

ij g , or vector 

 
t

11 22 33 23 31 12,  ,  ,  ,  ,  g  
(t-superscript denotes transpose). Form of a statistical ensemble of mi-

crostates fully is defined by probability distribution of the orientations of 
crystals, that is the texture function f(g). 

State of a polycrystalline system as a whole is characterized by tensor the 
rate of the macroscopic strain 

 
.ij ij f d

G

g g g
 

In averaging over the ensemble operates the current probability distribu-
tion of the crystallographic orientations. Tensor elements of ij  are form-

ing an integral observed . 
Relations of micro-plastic states in the ensemble create micro-tension sij. 

The tensor macroscopic stress ijs , which generates movement in the sys-
tem, there is a variable clearly connected with time. 

For the elastic-plastic states of materials have been established the follow-
ing fundamental ratios. 

1. A linear relationship between the stresses and elastic deformations, and 
stresses and rates of inelastic deformations [45]: 

 ,e p
ij ijkl kl ijkl kls c w   (4.2) 

where sij is the sum of the elastic and “dissipative” stress tensor, e
kl  is 

tensor the elastic strain, p
kl  is tensor the plastic strain rate; cijkl and wijkl is 

tensors of elasticity and viscosity. (As to plastic component of the Eq. (4.2), it 
derives from the general expression for the dissipative function of deformable 

                                                      
1 In [8] to describe the evolution of the texture function is adapted equation of hy-
drodynamics (rotation of crystals likened to the fluid flow) without determining the 
divergence in the system of curvilinear coordinates formed by Euler angles. 
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bodies, describing the internal friction, and only formally coincides with a 
viscous stress tensor in a fluid [45]). 

2. Linear response to disturbance in ensemble of interrelated micro-plastic 
states [28]: 

 ,p p
ij ij ijkl kl kl   (4.3) 

where ij  and ij  are tensors characterizing the rate of change of the 
local (non-uniform) and macroscopic (average) stress; ijkl are relaxation co-
efficients of non-equilibrium system, depending on its internal structure. 
(Theory linear response asserts that a non-equilibrium state tends to move in 
equilibrium, exactly as in equilibrium any deviation from the mean tends on 
average to zero [58].) 

Study of the mechanical properties of metals gave the following infor-
mation [20]: 

 elastic equilibrium when loading occurs almost instantly, therefore 
0e

kl ; 
 changing in the elastic moduli during deformation is negligibly small, 

that is, constijklc ; 

 with static loading the effect of strain rate 4 110 10p
kl  on the 

capacity to resist to (cold) deformation is insignificant, so that 
w t w  (w and  are the fixed components of tensors 

wijkl and p
kl ). 

Equation of motion of the micro-plastic states get by combining the fun-
damental Eq. (4.2) and (4.3) under being in agreement with experience the 
assumptions: 

 
 ,

.

ij ijkl kl klmn mn

mn mn mn

h
t

g g g g

g g
  (4.4) 

Here, mn(g) are fluctuations of the field of strain rates over the orienta-
tions of crystals, hijkl is plasticity tensor as inverse to the tensor wijkl (index p 
omit, as further only plastic deformations are involved in the equations). 

Shape of crystals is modeled by ellipsoids with principal axes (a1  a2  a3) 
parallel to axes of the rhombic symmetry of the sample texture which have 
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chosen as external coordinate system (X, Y, Z). Interrelation of the defor-
mations of anisotropic crystal and its anisotropic polycrystalline environment 
(when not very much difference of elastic properties) is approximately repre-
sented by a model of the ellipsoidal inclusion undergoing the transformation 
in matrix [18]. 

Deformation local fluctuation ij ij dt  being constrained by envi-
ronment creates the stress growth in the crystal 

 
  ,i ij ijkl klmn km ln mn mndt c dt

 
hence it follows immediately that 

 ( ),ijkl ijmn mnkl km lnc   (4.5) 

and also causes a homogeneous rotation inside of it 

 ,ij ijkl kl klt dt dt   (4.6) 

 

3 2

3 1

2 1

0
0 ,

0
t

 
that leads to a change in the distribution of crystallographic orientations. 
Here,  is the operator of infinitesimal rotations that related with angular 

velocity  = 1i + 2j + 3k at time t [37]. 
In the model are present the coefficients of constrained deformation ijkl, 

ijkl, depending on the shape of the ellipsoid ( ij is Kronecker symbol). When 
shear deformations ijij = jiij, 0  2 ijij  1 [18]. And as can be seen from the 
Eq. (4.5), the coefficient of elastic relaxation is 0  ijkl  cijkl. (Coefficient ijkl 
reaches its maximum value of cijkl, when a crystal having been deformed be-
comes comparable to a thin plate so that 1 2 3( )a a a .) 

Application of the model [18] means neglecting the disturbances of both 
stress and strain fields at the boundaries between crystals compared to fluctu-
ations over the orientations. 

3. Equation of the kinetics of the crystal orientation distribution in 
the Fourier representation. From the expression in Eq. (4.6), which deter-
mines the rotation of the crystal lattice in conditions of constrained defor-
mation, follows the relation between the components of the angular velocity 
of rotation  and strain rate tensor: 
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 2 ,q qij ij qij ijkl kl kle e  

where qije  is the Levi-Civita symbol, the non-zero elements of which 

123 231 312 1;e e e  132 213 321 1.e e e  
When assuming that coefficients ijkl does not depend on g substitu-

tion of the expression for  transforms the Eq. (4.1) to the following ki-
netic equation: 

 
1
2

.qij ijkl q klf g e J f g g
t

  (4.7) 

For a description of real systems with random sizes of randomly oriented 
crystals naturally to take coefficients of the constrained deformation ijkl for 
an average shape of crystals at the moment. 

Let us represent the functions under the infinitesimal operator of Jq in the 
form of expansions on generalized spherical functions T l g : 

  ,f U Tl l
l

g g   ij ijÉ Tl l
l

g g  
(l = (l, m, n) it is vector of indices of the spherical harmonics of degree l). 
Applying to both sides of Eq. (4.7) an integral transformation with the 

kernel 2 1l T l g , where T l g  is a complex conjugate function, we 
obtain the equation for rate of changing the spherical harmonics of the texture 
function f(g): 
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q

U e U É
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l ll
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G

l g g g g
  (4.8) 

The product of generalized spherical functions in expression under the in-
tegral has expansion to the series of Clebsch - Gordan [100]: 
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Therefore, in Eq. (4.8) there will be the sum of integrals of form 

 

  
*, 2 1  ) .(q ql T J T dl l

G

l l g g g

 
As a result of representations [100]: 
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  3
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and orthonormality of generalized spherical functions [16]: 
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the following components appear: 
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  3 ,, ll mm nnnl l  
which involve 1 2m m m ; 1 2n n n  by definition Clebsch-Gordan 

coefficients. 
In a system with cubic symmetry of crystals there are different from zero 

only harmonics Ulmn of order n = 4k (k = 0, 1, ) (Table 1.1), therefore in 
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Eq. (4.8) the terms with  ,q l l , where q = (1, 2), under summation on 
indices l1 and l2 are turn into zero. For q = 3 the set of index values i  j in the 
symbol eqij, and hence u  v in the coefficients ijuv it is (1, 2), moreover  

ijij = jiij [18]. 
As a result, the equation of the kinetics of the crystal orientation distribu-

tion in the Fourier representation will be following: 

    1212 122 * ,U n U É
t

l l l   (4.9) 
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Here, there is a convolution of the Fourier images in the space of general-
ized spherical functions, the formula of which has been deduced in [76]. 

4. Physical interpretation of the kinetic equation for the distribution 
of the orientations of crystals. As follows at once from the Fourier trans-
formation of the kinetic equation the rate of changing of spherical harmonics 
Ul  Ulmn of degree l < 12 is zero: when of cubic symmetry of crystals for l < 
12 there is only one independent harmonic of the n-th order, precisely, of the 
order n = 0 (Table 1.1). However harmonics of the high degree characterize 
the local fluctuations of distribution of orientations of the crystals that related 
with the occurrence of short-range order. 

The long-range order of orientations in a polycrystalline system gradually 
to create it is impossible. Ordering of orientations has to happen jointly that 
by jump would be originated crystallographic symmetry. Arising of the me-
chanically unstable structures of deformation (fragmentation of crystals dur-
ing deformation of near-critical [107 109]) heralds the instantaneous transi-
tion into a new stable structural state [14]. 

Generalization of available information leads to the idea of the formation 
of crystallographic texture as a kinetic phase transition that creates a stable 
structure with its own symmetry properties. 

Stability of the crystallographic texture is predicted by the kinetics  
Eq. (4.9): 

1. Tension along the axes of rhombic symmetry does not affect the crys-
tallographic texture.1 Within the ellipsoidal crystallites oriented along the 

                                                      
1 This result was obtained experimentally on a thin metal tape [33]. 
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symmetry axes the changes in strains 11 22 33,  ,  dt dt dt  do not cause ro-
tation. 

2. Relative to the shears parallel to the deformation plane the crystallo-
graphic texture is invariant. Components that depend on the 31 32,   are 
disappearing due to the symmetry properties of crystals. 

3. Shears parallel to the rolling direction 12  affect only the sharp part 
of the texture function.1 Herein harmonics of the high degree are mobile, but 
their effect is locally. 

From the analysis of the kinetics of the crystal orientation distribution it 
follows that the crystallographic texture does not undergo fundamental 
changes in the process of plastic deformation. Deformed texture saves the 
symmetry such that in an equilibrium. 

§ 4.2. Predicted Anisotropy in a Current State  
of a Polycrystalline System 

Solution to the dynamics equation of a non-equilibrium polycrystalline 
system simulates macroscopic deformation process revealing the properties 
of the material with the existing distribution of the orientations of crystals. 
Simulation model is tested on practice in analysis of the anisotropy of metal 
sheet. 

1. Equation of the dynamics of a weakly non-equilibrium polycrystal-
line system. State of a non-equilibrium system at the current time uniquely is 
described by the equation of joint evolution of the strain rate of differently 
oriented crystals (g), and of the orientations distribution density f(g). 

Physical parameters that depend on the orientations of crystals are own 
parameters of observed (g) on the group of rotations of three-dimensional 
Euclidean space G. Parameters reacting to the state of non-equilibrium sys-
tem, are controlling its dynamics. 

For crystals of cubic symmetry there are three elastic and two plastic con-
stants: 

 
  

   

t
1 2 3 1 1111 2 1122 3 1212

t
1 2 1 1111 2 1212 1122 11112

ˆ ˆ ˆ, , ,  ,  
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,

c c c c c c c c c

h h h h h h h h

c

h
 

it is meant the basis of crystal [53 54]. 
                                                      
1 On the experimental pole figures of thin metal tape after tension to failure in the 
directions 25  and 45  to the rolling direction there is observed the original sym-
metry of texture, only the shape of density maxima of the pole vectors changed 
[33]. 
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In the transition to an external system of coordinates the tensors of elastic-
ity and plasticity of cubic crystals are transformed according to the formulas 

 2 3 1 2 32 ,ijkl ij kl ik jl il jk ijklc c c c c cg g
 

 
  1 2 1 2

1 1
4 2

3 ,ijkl ij kl ik jl il jk ijklh h h h hg g
 

 
3

1
;ijkl in jn kn lnn

A A A Ag
 

ijkl  is an operator of linear transformation of the fourth-rank tensors in 
rotation of the basis which is described by matrix A(g) [90]. 

The plastic potential of crystals of cubic symmetry is represented by a 
function [54]: 

 

2 2 2 2 2
1 22 33 33 11 11 22 2 23 31 12

22 .h s s s s s s h s s s
 

Condition of the stationary plastic flow being 2  = const. Means, that is 
increased a strength to plastic flow {sij} can indicate on fall of the plasticity 
coefficients (h1, h2) what is related with the strain hardening of crystal. 

In consequence of the condition of the yield, the vector of coefficients of 
plasticity of a straining crystal with orientation of g is defined by the equation 

  
03 ,

t
h K h h é g   (4.10) 

where  
t

1 2,é éé g  is the vector of strain rates in the crystallographic 
directions 100 , 111 . 

Vectors constants h0 and K contain the elasticity limits of  
0 0
1 2,s s  and co-

efficients of strain hardening 1 1s e , 2 2s e  by tension of a single 
crystal in the directions 100 , 111 : 
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(M is metric coefficient in units of measurement of sij). It is expected that 
in the study area of elastic-plastic states the deviations from initial plasticity 
coefficients of h0 are small so 0

1 1 12 1,h h h 0
2 2 22 1.h h h  

When strain  > 10 ³ the plastic flow is carried out already by multiple 
slip in crystals [42]. Therefore as evaluation of the deformation hardening 
coefficients in the field of elastic-plastic states is suitable the generalized 
data for the stage of rapid hardening of single crystals on stress-strain 
curve. According to these data it turns out that 

 

3 0
1 1 1

3 0
2 2 2

10
,

10

K E s
K E s

K
 

where E1 and E2 are the elastic moduli of crystal in tension on directions 
100  and 111 . 

To determine the strain rate é in a specified crystallographic direction 
when the orientation of the crystal of g, it must be inverse transformation of 
observed ij(g) to the crystallographic basis, precisely kl ik lj ijé A A . The 
strain rate é1 along 100  can be found as average for all symmetric rotations 
of cube the component 11é g , and the strain rate é2 along 111  as a projec-

tion of 11é g  on this direction. 

Since 
3

1 ik kj ijk
A A , 

3

1
0

q q  (constancy of volume during 
plastic deformation), there is obtained the following expression: 

   
1

0

2 1 .
l l

lmn lmn
m ln ll

l UÉ  

Onto the consistency micro-plastic deformation in polycrystalline envi-
ronment are affected the coefficients of elastic relaxation ijkl(g) (4.5). Pois-
son's ratio , required for the calculation included in ijkl(g) coefficients of the 
constrained deformation ijkl, is evaluated by the isotropic part of the elastic 
moduli of cubic crystals 0

ijklc  [48]: 

 
0 0 0
1122 1111 1122 3 1 2 32 .c c c c c c c

 
This approach is consistent with the assumption of the same coefficients 

of the constrained deformation ijkl, ijkl for all orientations of crystals in the 
current state of a system: uneven changing a shape of variously oriented crys-
tals, in comparison to initial own non-uniformity can be neglected. 
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We introduce the vector of system states É = { Él
 }, which is the Fourier 

transform of the observed variables 

  Tl l
l

g É g  
in the a space of generalized spherical functions of T l(g). Fluctuations 

ij(g) will be represented by harmonics ij ij ijÉ Él l l , where ijÉ l  
are elements of vector Él constituted in the same way as (g). 

Interrelated with (g) the coefficients of plasticity h are represented by 
vector of harmonics H = { Hl

 }. Harmonics  

t
1 2,H Hl l lH  are definable 

provided conservation of a continuous medium: 

 
  1, 2, 3

sign si

;

gnq q

q

g

      

1,    0,
0,   0,
1,   0.

sign
x
x
x

x

 
Integral observable depending on the current distribution of orientations 

of crystals is calculated using spherical harmonics Él  Élmn, Ul  Ulmn: 
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2 1 .
l l

lmn lmn
m ln ll

l UÉ  

Equation of dynamics of a non-equilibrium polycrystalline system, com-
bining the Eq. (4.4) and (4.10), in the Fourier representation takes the form 
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  (4.11) 
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  (4.12) 

Here, ijklRl  are spherical harmonics of the operator ijkl(g) carrying out 
transformation of tensors cijkl(g), hijkl(g) when rotating the basis of cubic crys-
tals. 

In matrix        1, , 6 1, , 6ijkl pqR R p ql l  for each l only are 

six independent elements, since 23 44 ,lmn lmnR R  31 55 ,lmn lmnR R , 12 66 .lmn lmnR R  

Coefficients lmn
pqR  of order m = 6, 8,  , l; n = 8, 12,  , l as well as of odd 

degrees l are equal zero [77]. 
Expanded notation of the convolution of spherical harmonics which ap-

pears in the Fourier transformation of functions on a group G is shown in 
§ 4.1. Delta function (l) under convolution leaves spherical harmonics un-
changed. 

The condition for convergence of the Fourier series for the observed 
strain rate of (g): 
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satisfied if this is a dissipative system, as the norm of any vector that de-
fines the state of a dissipative system is limited [22]. 

For the nonlinear system studied, where the increasing internal resistance 
reduces the external action the specified condition is satisfied. 

Relative mean squares calculated with harmonics É and H: 
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is a measure of the non-uniformity of plastic flow and strain hardening of 
variously oriented crystals. 

2. Simulation of the deformation process in a polycrystalline system 
at a given mechanical action. Suppose that mechanical action on a poly-
crystalline system complies with the conditions of the proportional stationary 
loading so that   t tP n  where n is the loading direction with rate , 
which corresponds to unchangeable tensor of stress state of nij. Under these 
circumstances macroscopic stresses are uniform, and are increasing by a con-
stant rate of ij ijn . 

Let us introduce the vector 
t

,Z É U  that completely defines the state 

of the system at time t. Here, É É H  is vector of spherical harmonics of 
the observed strain rates (g) of variously oriented crystals, U is the vector of 
spherical harmonics of the probability distribution of orientations f(g). In the 
vector of control H É  are represented the plastic properties of a non-
uniform hardening crystals in a current state of the system. 

Equation of a non-equilibrium polycrystalline system to be represented in 
a generalized form: 

 , ,   , .
t t

Z Z H H H Z   (4.13) 

Explicit form of evolutionary functions  has been determined of 
Eq. (4.11) – (4.12). 

For self-regulating deformation process in a polycrystalline system to be 
described by the solution of Eq. (4.13) can be obtained only model in form 
differences, which establishes the dependence of the current state vector Z 
from its values in the previous moments of time (t0, t1, … , tk, tk+1, …): 
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and Lk denotes the interpolation polynomial of finite differences method. 
The magnitude of the step tk which in start of solution is much less than 

for the subsequent process is automatically adjusted during operation of the 
model to support the stability of a finite-differences procedure [37]. 

Vector Z0 corresponds to the initial state with the known distribution of 
the orientations of crystals and the same of (g) = 0. Initial vector of control 
H0 = h0 (l) is set according to the elasticity limit (or yield strength) in tension 
of single crystal in the directions 100  and 111 . External parameters, at 
which the system is subjected to mechanical action of P(t), are constant. 
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On the state vector Zk (k = 0, 1, …) affect not only the current coefficients 
of plasticity of variously oriented crystals of h(g) presented in the vector of 
control Hk but also the coefficients of constrained deformation in polycrystal-
line environment of ijkl , ijkl , depending on the shape of a 
deforming grain (crystallite). 

Let us suppose that the ellipsoidal shape of grain with the orderly direc-
tion of principal axes (a1, a2, a3) parallel to the axes of rhombic symmetry, 
existing in the system, under straining remains the same (when a resisting 
surrounding the grain does not rotate as a whole). To calculate the coeffi-
cients of the constrained deformation of the ellipsoidal grain it is required to 
construct the matrix of their shape for current sizes of 

  0 1  1, 2, 3q q qa t a t q : 

 

22
2 1 3 1

22
1 2 3 2

2 2
1 3 2 3

1

1 .

1

a a a a

t a a a a

a a a a

D

 
Into real polycrystalline system the grain shape is not uniform. There is 

diapason of changing of the macro-deformation t , where according to 
the matrix D(t) visible changes in the structure not occur, so that the current 
values of coefficients tD , tD  are indistinguishable. 

It is naturally to present dynamics of the constrained deformation coeffi-
cients, and therefore the relaxation coefficients that control interrelations 
within a system, as discrete transitions to new values at points  (  = 1, 2, 

), satisfying the condition 

 
3

1
3 ,qq av

 
where va is the observed coefficient of variation of random variables  

aq (q = 1, 2, 3) with a log-normal distribution law pa(aq) in the volume of ma-
terial of V. 

For matrix D(t) the current sizes of grain are assumed to be the average 
values 
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Calculation of the original coefficients ,  and of new, when the signifi-
cant changes in the shape of average grain on the field of non-uniform grain 
sizes appear, is carried out according to formulas that can be derived from the 
decision of a problem of elasticity theory for an ellipsoidal inclusion in a ma-
trix [18]. 

Let a grain in the shape of an ellipsoid oriented along the axes of rhombic 
symmetry is of sizes a1 > a2 > a3. Constructing the matrix of grain shape D 
with the elements of dij = aj /ai (i, j = 1, 2, 3), we calculate the following coef-
ficients: 

 1111 2 1 12 3 1 13 11 1 1 ,d d  

 1122 2 1 12 12 11 ,d d  

 2211 2 1 12 21 ,d  2112 1212 ,  

 1212 2 1 12 12 1 22 1 1 ,d d  

 1212 2112 2 12 2 ,  1 2 1 ,  1 2 ,  

 1 2 3 1,  

 1 1 2 12 121 ,L L d d  3 2 231 1 ,L d  

 1 2, ,   ,( ,) ( )L nF k L nE k  23 131 ,n d d  

 13 12 13arcsin 1 ,  1 1 ,d k d d  
F( ,k) and E( ,k) are normal elliptic integrals Legendre of the first and 

second kind (  is Poisson's ratio). 
Other non-zero coefficients of  ,ijkl ijkl  are produced by cyclic per-

mutation of the indices (1, 2, 3). 
When expected stability of the plastic flow in the system with the strain 

hardening, solution of the equation of the model in the Fourier representation 
should converges to the solution of the original equation. An area of the state 
space, where there are structural conditions of instability, is outside region of 
the limitations of the model. 

3. Verifying the deformation model by simulation the tensile testing 
of cold-worked sheet of low-carbon steel. By giving the parameters of ex-
ternal action that satisfied the conditions of static tensile testing, we can ob-
serve a macroscopic deformation process on a computer exactly as in the full-
scale tests. 

When thin metal sheet it is allowable a plane stress state with the tensor of 
a growth rate of macroscopic stresses in the form 
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Here,  and  are the rates of loading a sample on orthogonal axes, 

and  is the angle between the direction of tension in the plane of sheet 
and the rolling direction (X-axis), or the rotation angle around the normal 
to plane of sheet (Z-axis);  = 0 when uniaxial tension, 2 = 1 when 
symmetrical biaxial. Selected tension directions for subsequent trigono-
metric interpolation of data taken from the strain diagrams make up set of 

 = (0 , 30 , 45 , 60 , 90 ). 
Object characteristics under simulated mechanical tests are summarized 

in Table 4.1. These include the physical properties of crystals, precisely the 
constants of elasticity c and the yield strength s0 by tension of single crystal in 
the directions 100  and 111 , as well as the shape ratios of average grain in 
a polycrystalline material (the variation coefficient of the grain sizes of va 
adopted equal to 0.1). 

Table 4.1. 
Physical and structural parameters of the object of simulating mechanical tests 
Elastic constants c [GPa] 

[94] 
Yield strength s0 [MPa] 

[50] 
Grain shape ratios 

[38] 
c1 = 230.1 s1

0 = 83.0 a1/a3 = 7.5 
c2 = 134.6 s2

0 = 132.0 a2/a3 = 5.0 
c3 = 116.6   

 
Distribution of the orientations of crystals in thin-sheet low-carbon steel 

has been determined from the measured harmonics of the texture function 
(Table 2.3), Fig. 4.1 presents its form. 

Measure of strain hardening of the material it is an increase the resistance 
to straining compared to an initial. The strength to the plastic flow onset 

0( ) and the anisotropy coefficient of initial plastic strains r0( ) (ratio of the 
changes of plastic strain in mutually perpendicular directions each of that is 
perpendicular to tension axis) are calculated by Hill formulas [27]. 

For calculation as the approximate plasticity tensor of the metal sheet with 
rhombic symmetry is adopted average, with existing distribution of the crys-
tallographic orientations, tensor ijklh g  that calculated using the averaged 
operator of tensors transformation under rotation of the basis of crystal: 

 

0

4 0 0
.

l l
lmn

ijkl pq pq pq lmn
l m n

R R Ug g
 



64 

 

 

Fig. 4.1. Distribution of orientations of a sampled aggregate of crystals in the 
specimen of cold-worked low-carbon steel: (1) {112} 110 ; (2) {111} 110  

Herein these are included the normalized spherical harmonics Ulmn of 
probability distribution of the orientations of crystals f(g). The summands 
with m = 0 or n = 0 take weight of 0.5. 

Table 4.2 presents the data on the changes of the tensile strength ( ) and 
of the coefficient of normal plastic anisotropy r( ) in extreme points depend-
ing on the angle , which have been obtained by the simulated tests on uniax-
ial tension with a loading rate of 30 MPa s 1. 

Table 4.2. 
Anisotropy of strength and plasticity when different strain extent  

by the data of simulated tests of the metal sheet 
Strain, 

 [%] 
Tensile strength, ( ) [MPa] The plastic anisotropy coefficient, r( ) 

 = 0   = 45   =90   = 0   = 45   =90  
 0.0 114.70 102.98 109.12 1.1641 1.4225 0,9488 
 0.1 123,56 110.61 117.60 0.9796 1.4109 0.8181 
 10 205.30 181.43 195.60 0.9786 1.4061 0.8200 

  

f 
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Figure 4.2 presents an overall picture of the macroscopic deformation 
process in different conditions of mechanical action (arrow shows the rolling 
direction). 

Microinhomogeneity of deformation process which manifests itself in the 
fluctuations of plastic flow and of strain hardening of variously oriented crys-
tals is shown in Fig. 4.3. 

 

Fig. 4.2. Observed variables under simulation the tensile tests of metal sheet:  
(a), (b) the rate of plastic flow [s 1]; (c), (d) the strain hardening [MPa]. 

Deformation of 0.1% [(a), (c)] with loading rate of (1) 20 and (2) 30 [MPa s 1]. 
Deformation of 10% [(b), (d)] when tensile mode (1) uniaxial,  

and (2) biaxial with loading rate of 30 [MPa s 1] 
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Fig. 4.3. The fluctuations evolution (a) of the vector of strain rate and (b)  
of the vector of plasticity coefficients over variously oriented crystals. Biaxial 

loading with rate of (1) 20 and (2) 30 [MPa s 1] (  is strain extent [%]) 

1 

2 

 

8.4·10
3

0.7·10
3

0.1                                                                   10

(a) 

2 

1 

h 

2.8·10
4

0.3·10
4

0.1                                                                   10

(b) 



67 

Basic information from experiments on the simulation model is general-
ized in the following paragraphs: 

1. Increase of the tensile strength of ( ) as well as decrease of the 
coefficient of normal plastic anisotropy of r( ) is greater in the sheet 
tension direction where the stronger the strength to the plastic flow onset 

0( ). Irregularity of changes according to directions during deformation, 
onto the form of dependency of ( ) and r( ) does not have a significant 
effect. Initial anisotropy of mechanical properties of the metal sheet re-
mains stable (Table 4.2). 

2. The rate of macroscopic strain is in inverse dependence on the tension 
direction in the sheet plane as compared to the strain hardening ( ). The 
existing anisotropy is weakly sensitive to the rate of loading limited by condi-
tions of static tests. With acceleration a loading the plastic flow and the strain 
hardening are increasing and becoming more non-uniform on crystal orienta-
tions (Fig. 4.2 and 4.3). 

3. Fluctuations of the strain rate and the plasticity coefficients of variously 
oriented crystals during deformation undergo reverse changes. Development 
of process tends to equalize the plastic flow by increasing 
microinhomogeneity of strain hardening, it can be seen from the fact that  
is reduced while increasing h (Fig. 4.3). 

The quality of approximation of the solution of the original equation of a 
non-equilibrium polycrystalline system can be verified at given different lim-
its of the highest degree of spherical harmonics in infinite-dimensional state 
vector of Z. Observations confirm the stability of the solution when increas-
ing dimension of the state vector. 

Table 4.3 compares the data of models of different accuracy for the ten-
sion process in the direction of 45  to the rolling direction at loading rate of 
30 MPa s 1. 

Simulation model that takes into account the harmonics degree of l  12 
reveals the effects associated with the evolution of crystallographic texture. 

When into micro-processes there being included a motion of the orienta-
tions of crystals a falling the coefficient of initial plastic anisotropy of r0 
proved to be more, as if the plastic flow would experienced an increasing 
strength of 0. At the beginning, a motion of the orientations increases the 
strain stress as it is seen of  subsequently relaxes it. 

Table 4.3. 
Effect of inaccuracies of the simulation model on observational data 

Strain extent,  
 [%] 

Strain hardening, 
 [MPa] 

Plastic anisotropy 
coefficient, r 

Spherical harmonics 
highest degree 

 0.1  7.6345  1.4109  8 
  7.7101  1.3948  12 

 10  78.4487  1.4061  8 
  78.1061  1.3901  12 
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Confined mobility of crystallographic texture under deformation of the 
metal sheet can to be neglected in practice. 

Analysis of the information received, indicates that modeling the defor-
mation processes in the metal sheet gives a picture of the phenomenon, which 
is consistent with the physical representations. Simulation model serves as 
means of studying the elastic-plastic properties of the metal sheet in the au-
tomated system of research of crystallographic texture. 
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CHAPTER 5 
AUTOMATED SYSTEM OF RESEARCH  
OF CRYSTALLOGRAPHIC TEXTURE 

In the interactive software system that implements the optimal strategy of 
texture studies, an algorithmic complex performing the estimation, prediction 
and simulation is basic. Practical examples of the application of the system 
give knowledge on organization of information support, management and 
servicing [82, 84 85]. 

§ 5.1. Analysis of the Texture Measurements under 
Optimal Design of Experiment 

Texture information obtained in the experiment is provided in the best es-
timate of the regression model of the observed intensity distribution of dif-
fraction. 

1. Entering and processing the primary experimental data. The auto-
mated system puts on researcher a choice of regression model experiment 
satisfying the condition of its accuracy and stability, that is the number of 
estimated regression coefficients should be the minimal required for an ac-
ceptable approximation of observation data (with the same data accuracy it is 
the smaller, the weaker the texture). 

For selected regression model it is provided D-optimal design of experi-
ment with the minimum required number of measurement points of {r j}  
(j = j( );  is number of spheres {hkl}, and  is number of points at the -th 
sphere). The number of points N is equal to the dimension of the vector of 
regression coefficients, which is the vector of harmonics of the texture func-
tion of U = {Ulmn} with the given highest degree lmax. Researcher can add 
points to the constructed D-optimal design of experiment (or set up another 
design). 

Data are entered into the regression analysis program using the built-in 
editor with accompanying background information. 

Vector of measurements of each point r j (j = 1, 2,  , N) contains six el-
ements, precisely the number of pulses accumulated onto a diffraction line in 
four symmetrical positions of the sample and to background on the edges of 
line. The total number of rows is equal to N multiplied by the number of the 
samples. 

A measurement time of diffraction line and background the program re-
quests having opened the input windows. The average intensities on spheres 
of {hkl} presented in the observation area, which are required to the normali-
zation, are entered using the reference special window. 

Service package of programs provides the control and correction of errors 
in data entry, as well as the security of the system from incorrect actions and 
the recovery of the operating mode. Saving of information required to con-
tinue work in case of forced or abnormal abort is performed automatically. 
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Under primary data processing the normalized intensities measured 
from a background level are calculated and then are averaged over four 
repeated measurements of each j-th point. Sample variance of repeated 
measurements s² is estimated by the paired differences of the average inten-
sities jJ (j = 1, 2,  , N) for the minimum required two samples (§ 2.2). 

The processed results of measurements make up a vector J of dimension 
2N. After estimating the N coefficients of the regression model, the N obser-
vations will remain to test for agreement the model with the data. 

Documented data package may be copied or printed. 
2. Optimal estimation of harmonics of the texture function. For infi-

nite-dimensional true vector of harmonics of the texture function the best 
estimate by the regression model of observed scattering intensity on a 
polycrystal will be vector of U with a minimum norm 2U  (§ 2.2  § 2.3). 

In the automated system of research it is used the procedure of a randomi-
zation of data sample that enable to estimate the covariance matrix VU and 
prevent a bias in estimate of U when a little repeated measurements. 

Analysis of the experiment is performed in the following sequence [15]: 
1. From data being combined over the two samples is extracted a large 

number pairs of data samples with a random set of the same number of re-
peated measurements at each point, as in the original sample. 

2. According to obtained the M pairs of random samples there is evaluat-
ed the set of optimal regression estimates   1 , , MU U . 

3. As a result there are computed sample mean of estimates *U  with co-
variance matrix VU. 

Accuracy of the approximation of observations and reliability of the har-
monics estimate are tested by statistical criteria. 

When verifying the agreement of the chosen regression model with the 
measurements data there is considered the critical value F-test with the (N,N) 
degrees of freedom for confidence probability of P = 0.95. The significance 
of the regression coefficients is checked by t-test with the N degrees of free-
dom for confidence probability of P = 0.99. 

To check that estimates are uncorrelated it is used approximate criterion 
by Fisher: 

  3 2
1ln ,
1 PM  

where  is sample correlation coefficient, and P  is the critical level of 
the standard normal distribution for a given confidence probability of P [31]. 

The assumption of a diagonal covariance matrix VU will be rejected when 
the correlations are significant with the reliability of P  0.99. 
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The serving complex provides the assistance to researcher in situations 
where the statistical inferences on the estimation of the obtained data indicate 
a failure; either model is inadequate by observations, or all of its parameters 
within the errors. 

If the constructed regression equation under statistical tests is not rejected, 
interactive software system organizes all further studies using the vector of 
the measured harmonics of U and its covariance matrix VU. 

§ 5.2. Identification of Crystallographic Texture  
by Data of its Harmonic Analysis 

With the mathematical models is carried out the most accurate and com-
plete parametric and graphic representation of the texture of a specimen. 

1. Symmetry and dispersion of crystallographic texture. All the tradi-
tional ways of representing the crystallographic texture is performed by pre-
dicting fluctuations of the diffraction intensity on spheres in the reciprocal 
space of a polycrystal. 

The measured harmonics of the texture function {Ulm0} are used for ap-
proximate calculation of the intensities J(r, , ) on the sphere {hkl} of radius 

2 2 2r h k l  at points with spherical coordinates ,  by summing of 
the Fourier series (2.4). Summation of the series is stable, when each Fourier 
coefficient Ulm0 has a stabilizing factor, which takes account of measurement 
error lm  [95]: 

  

22
01 .lm lm lmU  

By the calculations there are constructed routine pole figures and stereo-
graphic projections of crystallographic vectors oriented as along the normal 
to the sheet plane and the direction of rolling. Graphic images can be record-
ed on the disc to compare with those that will be obtained after determining 
the textural components, for example, as in Fig. 3.2. 

The quantitative information contained in harmonics of the texture func-
tion can be presented under convolution as two texture generalized parame-
ters, which are changed within the interval [0, 1]. Of these, shkl is a deviations 
measure of all crystallographic planes {hkl} relative to the plane of the sheet, 
and suvw is dispersion measure of all crystallographic directions uvw , lying 
in the plane of the sheet (§ 1.2). 

Product (shkl  suvw) there is degree of approach to a random distribution of 
orientations. The ratio of (suvw /shkl) serves to technological research as an in-
dicator of controlled isotropy in the plane of the sheet under anisotropy across 
the sheet. 

In determining the generalized parameters of dispersion shkl and suvw there 
are calculated sum of squares of the measured harmonics Ulm0 with the stabi-
lizing factors lm. Errors of parameters shkl and suvw are estimated with covari-
ance matrix of measurements VU. 
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Sensitivity of the generalized parameters of the orientations dispersion on 
a change of the crystallographic texture has been revealed in studies of low-
carbon steel made by D.A. Kozlov [38]. 

2. Parameters of the texture components and the orientations distri-
bution in a random sampling of crystals. Confidence intervals of disper-
sion of the ordering crystallographic vectors can be constructed after the sep-
aration of the texture into components. The number of recognizable compo-
nents is limited by dimension of the observation vector of U with covariance 
matrix of errors VU (Ch. 3). 

Determination of parameters of a mixed probability distribution of the 
orientations of crystals to first is performed in fully automatic mode. The type 
of the most probable orientations can be detected on the set of predicted den-
sities of crystallographic vectors in the directions of the axes of symmetry of 
a sample, if the observations data are quite accurate. 

Allowability of the model of a mixed distribution of the orientations 
should be verified on pole figures and the stereographic projections. After 
reviewing the results achieved during global optimization, the researcher can 
continue the search for an optimal structure, specifying the expected types of 
texture components. 

The model corresponding to data with well-defined parameters is used for 
simulating the probabilistic experiments, which display distribution of the 
orientations in random aggregates of crystals. In graphical representation of 
sampled distributions it is distinguished the form of the texture components. 
Oblique Cartesian coordinate system with the origin in a maximum of the 
interchanging textural components creates a three-dimensional image. 

Repeating the probabilistic experiments on a computer multiply, it is pos-
sible to observe not only the form of the distribution of orientations, but also 
fluctuations of distribution on ensembles of grains, which are the source of 
the dispersion of primary measurements, even with negligibly small fluctua-
tions of grains number in ensemble. 

Empirical distributions of orientations of crystals in test specimens of 
copper and low-carbon steel, that being extracted by statistical simulation are 
presented in Fig. 3.1 and Fig. 4.1. 

Tables and charts of confidence intervals of dispersion of the crystallo-
graphic vectors relative to expected directions quantitatively characterize the 
orientational order. Graphical display of the dispersion intervals it can be 
seen on the example of the texture of copper (Fig. 3.3). 

The type of identified the most probable orientations, their weight frac-
tions and the degree of ordering give the complete information on the crystal-
lographic texture. 

3. Analysis of textural transformations in low-carbon steel using the 
automated system of research. Optimum experiment revealed important 
qualities of the textural transformation in thin-sheet low-carbon steel during 
recrystallization [67]. 
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Measurements of crystallographic texture of low-carbon steel of 08Yu in 
cold-worked by 72% and the recrystallized state using fast heating were per-
formed by D.A. Kozlov. To optimal regression experiment the highest degree 
of harmonics of the texture function is lmax = 8 (§ 2.3). 

Figure 5.1 shows the stereographic projections with the predicted levels 
of density of the orientations of crystallographic vectors along normal to the 
plane of the sheet and direction of rolling. 

Measured harmonics show a significant increase dispersion of the crystal-
lographic vectors in the sheet plane after recrystallization that affected the 
generalized parameters of texture dispersion presented in Table 5.1. 

Optimization of the model of a mixed distribution of the orientations of 
crystals leads to the conclusion that in thin-sheet low-carbon steel during re-
crystallization under rapid heating the rolling texture is reprodused, with two 
reliably identifiable components of {111} 110  and {112} 110 . Parameters 
of the orientations distribution as in deformed and in recrystallized specimen 
of low-carbon steel are presented in Table 5.2. 

Constructed texture functions consistent to the original data are used for 
statistical modeling the orientations distribution into random aggregates of 
crystals from test specimens. Empirical distributions giving representation on 
change of the textural components shape as a result of recrystallization are 
shown in Fig. 5.2. 

Table 5.1. 
Generalized parameters of texture dispersion  

in thin-sheet low-carbon steel 
Process forming texture  Deviations from the 

sheet plane by shkl 
Deviations from the 
rolling axis by suvw 

Cold rolling with reduction 
rate of 72% 0.7526  0.0190 0.1823  0.0074 

Recrystallization under 
rapid annealing 0.8451  0.0282 0.3642  0.0226 

 
Table 5.2. 

Estimates of the components of the crystallographic texture  
of thin-sheet low-carbon steel 

Sign Most probable 
orientations 

Weights of the 
texture 

components 

Parameters  
of the orientational order 

{hkl} uvw  
(a) {112} 110  0.753  0.004 20.3  0.6 14.3  0.4 

 {111} 110  0.247  0.004 42.3  1.3 44.0  1.7 
(b) {112} 110  0.434  0.008 23.3  1.3 19.7  0.5 

 {111} 110  0.566  0.008 23.1  1.8 7.2  0.2 

(a) cold-worked state; (b) recrystallized state. 
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Fig. 5.1. Density levels of the crystallographic orientations in a thin sheet  
of low-carbon steel: (1) (hkl) at plane of the sheet, (2) [uvw] along the rolling 

direction; for specimen in (a) deformed state and (b) recrystallized state 
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Fig. 5.2. A random distribution of the orientations of the sampled aggregates 

of crystals in thin-sheet low-carbon steel: (a) cold-worked state;  
(b) recrystallized state; (1) {112} 110 , and (2) {111} 110  
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Table 5.3. 
Maximum angle deviation from the rolling axis  

in the sharp texture component of low-carbon steel [deg] 
States  Confidence probability 

0.50 0.80 0.90 0.95 0.99 
cold-worked 9–10 13–16 16–19 18–21 23–26 
recrystallized 23–25 35–39 42–47 48–54 61–69 

Width of the intervals border with confidence level of 95 % 
 
A revealed broadening of texture maximum of {111} 110  explains the 

preferential growth of generalized parameter of the crystallographic vectors 
dispersion in the plane of the sheet, that is, suvw. There is occurred disordering 
the vectors of 110  relative to rolling direction and so the interval of devia-
tion angles has increased about 2.5 times (Table 5.3). 

It was found that when rapid recrystallization of a thin metal sheet domi-
nates growth of centers oriented by type of the most perfect textural compo-
nent. Expanding in the plane of the sheet, the texture maximum of 
{111} 110  gets doubled in the weight. 

Quantitative transformation of the texture of the thin sheet of low-carbon 
steel discovers that crystallographic orientation with a high degree of order in 
cold-worked state is the highly active during recrystallization. 

§ 5.3. Studying the Anisotropy of Strength and Plasticity 
of Metal Sheet by Measured Texture 

When simulation of plastic deformation using the information on distribu-
tion of the orientations of crystals there is achieved so depth of study of the 
material that unavailable for full-scale tests. 

1. Prediction of the initial anisotropy. Effective modules of elasticity 
and plasticity of metal sheet are calculated by averaging the modules of crys-
tal with known distribution of its orientations. As a result of averaging the 
transition from cubic crystal to a polycrystalline system with rhombic sym-
metry occurs. 

To calculation these are required the elastic constants of single crystal of 
c11, c12, c44, and the elasticity limits (or yield strength) of s1, s2 in tension of 
single crystal on the directions of 100 , 111 . The program opens the input 
windows for the data. 

Averaging the tensors of elasticity and plasticity of crystals is performed 
in the Fourier representation, using the measured vector {Ulmn} of harmonics 
of the texture function and the matrix of spherical harmonics lmn

pqR  of the 
transformation operator of the fourth-rank tensors when rotating the basis, in 
which they are defined (§ 4.2). The matrix lmn

pqR  is contained in an auxilia-
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ry file involved to the automated system for studying the crystallographic 
texture along with the program of its calculation. 

Effective elasticity coefficients of a polycrystal are calculated by the ap-
proximate formula [51]: 

    

1* 11
2

.cC c  

Detailed calculation of the tensor of effective modules of elasticity and es-
timation of their variances by the covariance matrix of errors of the measured 
harmonics of VU are described in [81]. 

Having the tensor of effective modules of elasticity of metal sheet, it is 
possible to construct curves of technical elastic modulus in function of the 
angle of rotation in the planes of rhombic symmetry of a sheet, perpendicular 
to the coordinate axes (X, Y, Z) [47]. 

As a tensor of effective modules plasticity of metal sheet it is adopted the 
average tensor for a polycrystalline sample with an existing the orientations 
probabilities distribution. Using an approximate tensor there are calculated 
the elasticity limits (or yield strength) and the coefficients of the normal plas-
tic anisotropy for different directions in the planes of symmetry of metal 
sheet [27]. 

Example predicted from the measured harmonics of the texture function 
of the elasticity limit anisotropy of thin sheet of low-carbon steel 08Yu with 
deformation of 72% is presented in Fig. 5.3. 

Comparison of the 95-percent confidence interval of forecasts with avail-
able measurements of maximum rise of the elasticity limit of iron after roll-
ing for the strain extent of 70% suggests that the explicit discrepancy of fore-
casts with reality is not found: 

/ , % Forecast Measurement [91] 
Cold-worked state 9–12  10 
Recrystallized state 6–11  10 

Predicted upon crystallographic texture the anisotropy of the strength to 
the plastic flow onset has the same appearance as the well-determined anisot-
ropy of Young's technical elasticity modulus [84]. 

2. Simulation of mechanical tensile testing of a metal sheet. Simulating 
the deformation of test sample on a computer is the process of numerical so-
lution of the equation of dynamics of a polycrystalline system with the cubic 
symmetry of crystals and rhombic texture at a given mechanical action. 

The decision describes the evolution of the strain rate tensor of variously 
oriented crystals. Dynamic parameters of a system such as the tensors of plas-
ticity of the hardening anisotropic crystals and the coefficients of stress relax-
ation in a polycrystalline environment with the changing shape of ellipsoidal 
grains, act as natural internal regulators of the deformation process. 
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Fig. 5.3. Predicted anisotropy of the elasticity limit of cold-worked  
low-carbon steel (95% confidence interval) [MPa] 

The observed tensor of the macroscopic strains rate is the integral variable 
of process depending on the probability distribution of the orientations of 
crystals. Evolution of the probability distribution of the orientations caused 
by rotation of the crystals lattice when constrained grain deformation in prac-
tice can be neglected (§ 4.1). 

Information support of modeling the deformation of the metal sheet in-
volves the distribution of the orientations of crystals, the physical properties 
of crystals (tensors of elasticity and plasticity) and the grain shape ratios 

 ,x z y za a a a  in the sheet plane (X, Y) with the normal Z. 
The finite-differences model of deformation processes in a polycrystalline 

system is designed for simulation tests on tension in the plane of metal sheet. 
Planned series of tests includes uniaxial tension in three directions relative to 
the rolling axis (0 , 45 , 90 ) and symmetrical biaxial tension. Measure of 
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deformation by uniaxial tension is an elongation of the sample, and on biaxial 
tensile a relative expansion of its area (or relative thinning). 

A loading rate when simulating tensile tests is automatically specified but 
the researcher has the possibility to vary it in different series of tests provided 
it within acceptable limits for static tests controlled by the program. 

At a fixed strain the dependence of all characteristics on the direction in a 
sheet plane is calculated by trigonometric interpolation over observation 
points. By the flowing components of the strain tensor it is determined the 
true coefficient of normal plastic anisotropy: 

 ,db dh
b h

r  

where b and h is width and thickness of the sample at a strain of . 
Subsystem of studying the anisotropy of strength and plasticity of a metal 

sheet organizes simulating the mechanical tests, performs mathematical pro-
cessing of results and creates the most complete graphical representation of 
the acquired information. Progress of mechanical tests is recorded to the pro-
tocol, which is stored in the archive. 

3. Example of a comparative analysis of the anisotropy of thin metal 
sheets with the differing texture. As an instance, the specimens of steel 
10GS and 08Yu are taken. Original data for analysis it is results of the opti-
mum texture measurement performed by D.A. Kozlov (§ 2.3). 

The form of identified texture of each tests specimen is visible over a ran-
dom distribution of the orientations in a sampling aggregates of crystals that 
displayed in Fig. 5.4. 

One of two reliably identified texture components in both specimens is of 
type {111} 110  (in 08Yu its proportion about of 0.25, and in 10GS about of 
0.9). The essential difference is that in 08Yu the crystallographic planes of 
{111} are oriented well over sheet plane, whereas in 10GS there are ordered 
only crystallographic directions of 110  along the rolling axis. 

Simulating the tensile tests in the plane of sheet was carried out at a load-
ing rate of 30 MPa s 1. Physical and structural parameters on simulation of 
the deformation processes are the same as in Table 4.1. Information derived 
from experiments by the model is represented in Fig. 5.5 – 5.7 

A picture of the anisotropy of the specimens studied by qualitatively is 
different. Strength to the plastic flow onset in the specimen of steel 08Yu 
proved to be larger in the rolling direction, while of steel 10GS transversely. 
Anisotropy of strain hardening has the same appearance as anisotropy of 
yield strength therefore with increasing deformation an overall picture does 
not change (Fig. 5.5). 
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Fig. 5.4. Empirical distributions of the crystallographic orientations  
for specimens of thin-sheet steels of (a) 08Yu and ( ) 10GS; 

(1) {112} 110 ; (2) {111} 110 ; (3) {001} 110  

(b) 
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Fig. 5.5. Anisotropy of strength to plastic flow [MPa]: (a) 08Yu; (b) 10GS. 
The strain extent of (1) 0 and (2) 0.1% 

 

Fig. 5.6. Coefficient of normal plastic anisotropy: (a) 08Yu; (b) 10GS.  
The strain extent of (1) 0 and (2) 0.1% 

Calculations show the rapid change of the strains anisotropy coefficient of 
r( ) yet before reaching the yield strength 0.1, which then is slow down.1 
Falling of value r0 is greater for such direction in the sheet plane where the 
strength to the plastic flow onset of 0 is the greatest, that is, along the rolling 
in steel of 08Yu and across the rolling in steel of 10GS (Fig. 5.6). 

                                                      
1 Similar results are available for copper from numerous measurements of the integral 
coefficient r  for different strains  with subsequent extrapolation to   0 [96]. 
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Fig. 5.7. Static viscosity [kJ/m³]: (a) 08Yu; (b) 10GS; (1) uniaxial tension;  

(2) symmetrical biaxial tension. The strain extent of 10% 

When testing on biaxial tensile the properties of steel 08Yu take an inter-
mediate position within the existing anisotropy. Otherwise behave the proper-
ties of steel 10GS, showing a particular sensitivity to the loading conditions. 
The difference is visible, for example, on the static viscosity that is measured 
by a specific work of deformation (Fig. 5.7). 

Complete analysis of the information obtained during simulated tests of 
specimens of thin-sheet steels 08Yu and 10GS was carried out in [85]. 

4. Computer technology to studying the anisotropy of sheet materials. 
In-depth study of the anisotropy of the mechanical properties of metal sheet 
using the latest achievements of texture analysis contributes to the evidence-
based assessment of its technological quality with the lowest cost for research. 

Designed the automated system includes the tool means to ensure sys-
tematic accumulation of information and its transformation into a specific 
data requested by the user. Technology of research consists in building and 
using a knowledge base on the anisotropy of the properties of a broad class of 
sheet materials with cubic symmetry of crystal. 

Software support of knowledge base provides: 
 Organization in the disk file system of a computer the specified struc-

tures of data on the materials under study, and providing a list of spec-
imens. 

 Controlling the data updates developing a dynamic structure of data. 
 Displaying the most complete achieved knowledge on the studied 

problem by the computer resources. 
Adoption of the modern research technology to practice there puts for-

ward a problem to automating the optimal by quality of object representation, 
control to measuring in the diffraction space. 
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PART II 
DISLOCATION STRUCTURE  
OF STRONGLY DISTORTED CRYSTALS 

In the outset there was a phenomenological model of a real structure of 
crystals with blocks and strains. By means of them the observed broadening 
of the X-ray lines was explained. Harmonic analysis of the profile of a few 
lines had to reveal a degree of imperfection of crystals [102]. 

With the creation of the theory of X-rays scattering, where used the dislo-
cation model of structure of deformed crystals, it is made possible on width 
of the diffraction line to determine the average density of dislocations in de-
formed crystals. Applicable to practice formula exists for heavily washed-out 
nodes of the reciprocal lattice of crystals. Therefore, in principle, there is well 
measurable a very high density of randomly distributed direct dislocations 
when choosing a large length of the diffraction vector [39]. 

Achievements of the fundamental diffraction theory by M.A. Krivoglaz 
are summarized in [61]. There are mixed techniques, connecting parameters 
of the phenomenological model with the conditional density of dislocations, 
for example [1, 97]. 

Modern theory has advanced by the quality of the dislocation model of a 
real structure of crystals. Harmonic analysis of the diffraction line has re-
newed, reaching the optimal estimation of a random system of dislocations in 
crystals. 
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CHAPTER 6 
THEORETICAL FOUNDATIONS OF DIFFRACTION STUDIES  
OF DISLOCATION STRUCTURE 

System of dislocations occurring during the deformation of crystals is 
simulated by loops of a random size with a random distribution in its own 
slip planes. Diffraction theory constructed for the system of dislocation loops, 
is applicable to the entire space of structures, that includes disorder (random 
network), short-range order (random clusters), and long-range order (regular 
network). Observability of the dislocation structure depends on the existence 
of diffraction mappings that allow measuring the parameters of the model. 
Different states of a structure are measurable in the different areas of the dif-
fraction space and with different accuracy [63, 72 73]. 

§ 6.1. Mathematical Description of the Diffraction  
by Deformed Crystals 

Into the theory of diffraction are entered the Fourier representation of the 
displacement field from a circular dislocation loop, and the matrix of the 
spectral density of the distribution of loops in the crystal. 

1. The diffraction equation for crystals with a large number of de-
fects. Distribution of the intensity of X-ray scattering, when the atoms in a 
crystal are displaced from ideal lattice sites, has a Fourier image 

 2 exp , .
s

sI F i
r

R q U r R   (6.1) 

Here, F is the structural amplitude of scattering, q is the diffraction vector, 
,sU r R  is the difference between the displacements of atoms from the 

sr  and sr R  sites at a given concentration and arrangement of defects, the 
summation is over all lattice sites, which number is N. Angle brackets denote 
averaging over the statistical ensemble, with all possible defects arrangement 
in a crystal at constant macroscopic parameters (density, correlation, order). It 
is considered that for such defects as dislocation, changes of the structural 
amplitude are negligible [39]. 

Displacement the lattice site rs is combined out of displacements from all 
defects: 

 

  ( ) ),(
t

s t s tc
r

U r r u r r

 
c (rt) is a random variable equal to unit if in site rt there is a defect of type 

, and zero if it there is not; u (rs  rt) is displacement of atom out of lattice 
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site rs from the defect , which is in site rt; for all types of defects  it is im-
plied a summation. 

Coefficients of the Fourier representation of the resulting displacement 
are of form 

 
 ,ckk kU u

 

where *
k ku u  and *c c kk  are the Fourier components of the dis-

placement field u (r) from defect of type  and the random function c (r), 
which describes the placement of these defects. What is more in ck  there are 
represented the fluctuations in the number of defects by volume of crystal 
and local fluctuations in the statistical ensemble: 

 
.c c ck k k  

Equation (6.1) with the transition to the k- space takes the form 

  
2 1exp 1 .s

s

i i

N
I F i c e ekR

k k
kr

r k

R q u   (6.2) 

Real crystal can be divided into elements of volume V(r), each of which 
is much smaller the total volume V, but contains many defects. Under any 
detailed placement of defects in a statistical ensemble (at given macroscopic 
parameters) fluctuations of a local density in V(r) will be small. Probability 
distribution of local fluctuations for a large number of defects in a crystal 
being approximated by the function [110]: 
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(G is the constant of normalization). 
When period of fluctuations of the concentration field is much smaller 

than size of crystal, the matrix of the spectral density 
1 2

c ck k  is close to 
*c ck k  [30]. 

Averaging in the Eq. (6.2) by the probability of local fluctuations in the 
density of defects in a crystal results to the following diffraction equation: 
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  (6.3) 

The matrix of the spectral density included in Eq. (6.3) is related to the 
macroscopic parameters of distribution of defects in a crystal. 

2. Spectral density of defects distribution. Random values of c (r) are 
either zero or unity. Therefore 
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Here, c r  and ,P r  is the probability of occurrence defect  
in the r and the conditional probability of occurrence defect  in the r +  
when in r there is of  (  is Kronecker symbol). 

When absence of order in arrangement of defects the probability of find-
ing defect  in any lattice site r is the same: c cr , where 

c N ;  is number of defects  in a crystal. Introducing the correla-

tion parameter , characterizing average for all r probability of finding 
defects  and  at a distance of  (   0,  = ), it can be write 

 
( ) ( ) ( ),c c c cr r

 

   

1( ,) ( ) cc c
c

  

and  is function of the dependence of correlation on the distance ; 
c  is total concentration of all defects (for 1c  negative correlation can be 
neglected, as its order of value c ) [44]. 

Description under the approximation of pair correlations is justified by the 
fact that defects in a crystal are found at microscopic distances from each 
other [101]. 
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Let us suppose that among defects a certain proportion  forms a period-
ic structure with nodes lm, the total number of which is equal to M. Then 
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Here, c ( ) is concentration of  at a distance  from ; (r) is Dirac delta 

function. 
Wave of density fluctuation of defects  over volume of crystal that con-

sidered being infinitely large, 
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gm is the reciprocal lattice vector of the ordered structure. 
Using equations 
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it is possible to determine the spectral density of distribution of defects: 
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According to the spectral density expression there are the following com-
ponents of T in the diffraction equation of (6.3): 
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*, 1 cos ,( )ij i jW u uk R k k kR  

where T0 corresponds to a random distribution of defects, T1 takes into 
account a correlation, and T2 means the appearance of periodicity. 

When assumed a random distribution of defects in crystal, so that at any 
point r 

 

1  with probability  ,

0  with probability  1 ,
( )

c
c

c
r

 
and moreover 1c , the original equation for I(R) yields the formula ob-

tained in [39]: 
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If to introduce the Fourier representation for ,u r R  and to assume 
that  1Nkq u R , then after summation over sr it is obtained 
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that coincides with T = T0, where , , and all 1c . 
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Waves of density fluctuations of defects in a crystal of ck  affect the 

function  in the Eq. (6.3). Assuming that ck  is of the form (6.4), we have 
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So, the sine harmonics of the diffraction line that appear with the defects 
ordering are negligible, their amplitude is of  c  from the cosine harmonics. 

Constructed the diffraction equation applies subject to small compared to 
a crystal size periods of fluctuations as the concentration field of defects, and 
created by them the field of lattice displacements. 

3. The displacements field in a crystal with dislocation loops. Type of 
dislocation loops is completely determined by the tensor of dislocation mo-
ment dij = biSj, where bi is i-th component of the Burgers vector, Sj is the pro-
jection area of the loop on a plane perpendicular to the j-th coordinate axis. 

In continuum approximation vector of displacement at a point r from a 
closed dislocation loop with center r' is 
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S
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ijkl is tensor of elastic moduli, and ˆ ( )kmG r  is Green's tensor-function; the 
integration runs over the loop area S [45]. 

From here the Fourier component of the displacements field of circular 
dislocation loop will be 
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where Gkm(k) is the Fourier-image of Green function, Jn(x) is cylindrical 

Bessel functions of I kind, k' is modulus of projection of the wave vector k on 
loop plane,  is loop radius, and v0 is volume of the unit cell of crystal. 

If to employ obtained in the approximation of elastic isotropy of a crystal 
the expression of Gkm(k) [18], then 
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 2ij ll ij ij jiD d d d
 1 21 2 1 ,  2 1 2 ,  

 is Poisson coefficient, and ij is Kronecker symbol. 

Since for dislocation loops 2
0

1~ bS
vkk

k
u , then under 

2k and 

2 2 22 H K L
a

q , where a is period of the crystal lattice,  is crys-

tal size, and {HKL} is reflection indexes, there is restrictions 
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Consequently, the diffraction line harmonics will be calculated with good 
accuracy when the size of dislocation loops on the order of less than the crys-
tal size. 

4. A Bounding surface to crystal. The displacements field in a crystal of 
finite size should not create stresses on bounding its volume V surface SV. 
Condition is satisfied if 

 ,j j j ij iU U U e rr r r  

where jU  are displacements in an infinite elastic medium, when inside 

allocated surface SV are introduced defects; jU  are displacements that 
return the size and shape of SV to the original; eij is tensor of uniform exten-
sion when removing the compression by non-deformed matrix [18]. 

Equation (6.1) for the finite-size crystal takes the form 

 
 

2

 exp , exp , .

j ij j
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q e Ri

j j s j j s

I F e

iq U iq U
r

R

r R r R  

Last factor was calculated and presented in Eq. (6.3). Uniform lattice ex-
tension of eij leads to shift of lines without changing their shape. It remains to 
re-determine the sum over rs that adjusted taking into account the jU . 

For crystal without macroscopic bending (sum of Burgers vectors equal to 
zero), the displacements jU r  are determined by using the equation of 
elastic equilibrium in the presence of solid forces that are expressed through 
tensor of the dislocation moment density [45]: 
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Here, j  is number of loops with tensor of the dislocation moment ikd  in 
area V bounded by surface SV (over all  implied summation). Besides in an 
infinite space is introduced a crystal shape function: 
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Solution of the problem in the Fourier representation, where s(r) has the 
components sk, will be 
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For a bounded crystal is modifying the wave of fluctuation of defects 
density from Eq. (6.4):  0c c sk k . Subject to the necessary cor-
rections there are received formulas 
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If the Fourier components 1k , then 
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For interval 0 2k  is obtained an estimate 3c ak . 
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Thus, the formula is acceptable, as long as the dislocation density 

d  (for example, d   1011 cm ² when  = 500 a). 
The consequence of finite sizes of crystal it is attenuation of cosine har-

monics in the I(R) and appearance of sine harmonics. As a result, the distri-
bution of scattering intensity is made even more diffuse and asymmetrical. 

In Equation (6.3) quantity  gives an increase in T which relative value is 
of the order of c . Therefore with sufficient accuracy the form of intensity 
distribution is represented in the Fourier components 

       
2 1 ,TI N F e iR  

where  is the relative value of sine harmonics from the Eq. (6.10). 
5. A Random system of dislocations in the real structure of crystals. It 

is reasonably to suggest that in deformed crystals in each of p existing slip 
systems arises a random number of dislocation loops  (  = 1,  , p) with 
random sizes  and coordinates r. Type of loops, that is dislocation Burgers 
vector b and vector normal to the loop plane n, is determined by slip system 
so that  there is a random number of loops of type . 

Let us assume that all the random variables describing the statistical en-
semble of dislocations systems are mutually independent. It should be con-
tinue to average the e  T over the ensemble that has received additional de-
grees of freedom. At first we will find the average Te  over all possible 

 with the total number of loops in the crystal of 
1

p
. Further 

averaging over random realizations of (r) in the ensemble will be replaced 
on averaging over the distribution of  in the volume of the crystal, so as is 
allowed by the ergodic hypothesis [44]. 

With a large number of loops  the fluctuations in their local density and 
the sizes distribution with respect to the averages over the ensemble will be 
small. Then fluctuations of the quantity T as well will be small, so we can 
write TTe e  [37]. 

Let the dislocation loops with equal probability can be located in all p slip 
systems in a crystal, which is close to reality for bcc crystals and feasibly in 
the fcc crystals with the high energy of stacking fault. The probability that 
exactly  (  = 1,  , p) loops from the total number of , which has ap-
proximately the Poisson distribution, are found in the slip system , is deter-
mined by Bernoulli distribution  1 ,pB  [105]. Then the expected 

concentration of loops in each slip system is equal to c p , where c N  
is the mean concentration of all dislocation loops in a crystal. 
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When calculating T the sum over k in Eq. (6.6) and (6.7) can be substitut-
ed by an integral over k-space multiplied by a normalizing constant V /(2 )3. 
Having in mind that 1c , we obtain the equation 
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Symbols ijkle  and ijklmne  are equal to unit, when the number of identical 
indexes is even, and zero when it is odd. 

At the tensor coefficients ( )
ij  is represented the destroying power of 

the dislocation field for periodic structure of crystals: the higher the coeffi-
cients, the more diffuse nodes of the reciprocal lattice upon any shape. 

Averaging over the distribution of loop sizes hereinafter is denoted by an-
gle brackets marked with symbol . 

Number of loops in the slip systems ( , ) under their total number in 
crystal of  is described by correlated random values obeying the bivariate 
Bernoulli distribution [105]. On the assumption that sizes of all loops, whose 
number within limitations 1 N , are independent identically distrib-
uted random values we obtain the equation of the averaged correlation com-
ponent in the form 
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k  is Fourier image of the correlation function , depending on 

the distance  between the centers of loops;  is proportion of all the orderly 
distributed loops from the total number of . 

When calculating the periodic component of the T2, defined by Eq. (6.8), 
summation over all space of the reciprocal lattice ordered structure is substitut-
ed by summation over unit cell vectors of 2g j , where  is period of 
main translations, j are unit vectors in the translation directions. To take into 
account the number of cells of the reciprocal lattice of ordered defects in a unit 
volume of the reciprocal space of crystal, each term is multiplied by 

3a . 
The equation of the averaged periodic component will have the following 

form 
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Constructed the diffraction equation conforms to the structure of de-
formed crystals that modeled by the distribution of dislocation loops in their 
own slip planes. 

By available estimates of dislocation density 108 cm ² < d < 1013 cm ², 

where 2
d 2 a c a  the average concentrations of dislocation 

loops should be in the range 
1 18 310   10a c a . Thus the 

smallest of possible number of loops in crystals of the smallest existing size 
(   10 m) has a lower limit  > 103. 

The theory assumptions, which are justified for a large number of defects, 
are applicable to the object under study. 

§ 6.2. Predicted Diffraction Pattern for System  
of the Dislocation Loops 

When studying the data predicted by the equation of diffraction there is 
found out the role of various parameters of dislocations system upon real 
structure of crystals. 
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1. Harmonics of the diffraction line. To calculate harmonics of the 
{HKL} diffraction line Z axis of the Cartesian coordinates system (X, Y, Z) is 
chosen along the normal to the reflecting plane {HKL}. In this coordinate basis 
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q R
 

When a crystal rotates around the Z axis, the effect of atomic displace-
ments in the reflecting plane itself disappears in sum, and the distribution of 
scattering intensity along q depends only on displacements normal to the 
{HKL} plane. 

Of Equations (6.11) – (6.13) at given {HKL}, T(m) (m = 1, 2, ) is calcu-
lated as the minus logarithm of the normalized harmonics e T(m) of order m. 

As example the {112} diffraction line of bcc iron crystals is selected. On-
ly the slip set 111 {110} is believed to be active. Specified the dislocation 
density is 1010 cm ². 

2. Effect of sizes level of the dislocation loops. Consider the model of a 
random distribution of dislocation loops, when T = T0. In Eq. (6.11) of com-
ponent T0 are summed up  for  = . To integrate in k-space it is suitable 
a cylindrical system of coordinate associated with the normal vector n to the 
plane of loop : 

 

     2 ² ,w d
k

k k

 

 
   

2
 

2

1 0

0

2

1 ,    

     ( ,   .) ( )

utJ t t e J vt dt

u v RR n R n

  (6.14) 

Computed T(m) = T0(m) at the same size of dislocation loops , equated 
to the average , is shown in Fig. 6.1. 

Type curve T0(m) depends on the size level of the dislocation loops: T0  
(1  e  m) when the small loops (   50 a); T0  m  (  < 1) for medium-sized 
loops (50 a <   200 a); T0  m with the large loops (  > 200 a). 

General picture of the effect of the dislocation loops sizes on the harmon-
ics of the diffraction line is the same as in the theory by M.A. Krivoglaz [39]. 

Specific numerical values are close until loops yet small [63]. Formula for dis-
placements of the lattice sites at distances r from the dislocation loop, which is used in 
[39], it is  

2 2 ( )rb ru r  [18]. An increase in the radius of loops , 
when the same dislocation density in crystal reduces the number of sites sufficiently 
far from all loops for acceptable accuracy of calculation. 
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Fig. 6.1. Curves of the logarithms of normalized harmonics of the diffraction 
line on changing mean sizes of dislocation loops: (1)  = 50 a; (2)  = 100 a; 
(3)  = 250 a; (4)  = 500 a. Dashed lines with allowance for the dispersion  

of the loops sizes about the mean 

In order to approximately allow for inhomogeneity of the dislocation 
loops sizes, we assume the logarithmically normal distribution of . (It is pre-
dictably asymmetric distribution of the probabilities of sizes of loops, since 
their expansion encounters obstacles.) With logarithmically normal distribu-
tion a random value  can vary by more than an order of magnitude if the 
coefficient of variation 1

3 . 
Curves of the function T0(m) with allowance for the dispersion of  rela-

tive to  are plotted by the dashed line in Fig. 6.1. The given coefficient of 

variation of the loops sizes it is 0.2 . Averaging over random fluctua-
tions of  was performed by the Monte Carlo method. Deviations of the 
dashed lines suggest that the inhomogeneity of the loops sizes speed up the 
decrease of harmonics of the diffraction line. 

T0(m) 

m0  400

1.0 
 
 
 
 
 
 
 
 
 
 
 

0.0 
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3. Models of correlation in the dislocation structure of deformed 
crystals. According to the physical representations about the object, a 
random pile-up of dislocation loops arises because of correlation in the 
distribution of loops in the slip plane itself and along parallel planes. 
(Correlation on the intersection line of the slip planes is neglected as its 
contribution is small, and the calculation is too complicated). To model a 
pile-up, it is required to construct a convolution of two correlation func-
tions, one of which depends on the distance in the plane of the loop, the 
other from the distance along the normal to it. 

Let us denote the functions of normal (one-dimensional) and planar (two-
dimensional) correlation as (1)( ) and (2)( ). The space (three-dimensional) 
correlation function and its Fourier image are determined by the formulas 

 

3 1 2 (3) (1) (2)( ) ( ) (  ,      .) d k k k

 
It can be supposed that the correlation decreases with distance  between 

the centers of the loops in accordance with the exponential law.1 Arguments 
of the exponent are in (1)( ) the projection of  on normal vector n to the 
loop plane, and in (2)( ) the length of projection vector of  on the plane: 
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Parameters  and  denote distances within which the probability of find-
ing a pair of loops is appreciably higher than with their chaotic distribution 
over the volume of the crystal. 

In Equation (6.12) of T1 component for chosen correlation function fol-
lowing expression will appear 
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1 If  arises at a distance 1 from  with a probability ( 1), and  arises at a dis-
tance 2 from  with a probability ( 2) , then as a result of two independent ran-
dom events  arises at the distance  = 1 + 2 from  with the probability  

( ) = ( 1) ( 2). The function that satisfies this equation it is ( )  eh  (h is the 
bonding parameter). 
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d and b are the interplanar and interatomic distances (u and v are the same 
variables as in Eq. (6.14)). 

Correlation component T1 when different parameters of the model of the 
dislocation structure of iron crystals in the absence of long-range order 

0  is shown in Fig. 6.2. 

 
Fig. 6.2. Correlation component of the harmonics logarithm depending  

on the model parameters: (1) /b = 2, /d = 2; (2) /b = 2, /d = 7;  
(3) /b = 7, /d = 2;  = 100 a 
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Fig. 6.3. Profile of the diffraction line of crystals with a correlated distribution 
of dislocations loops in the slip plane: (1)  = b; (2)  = 3b (  = 500 a).  

Dashed line for chaotic distribution of loops 

Effect of correlation in the plane of the dislocations loops is more signifi-
cant than along the normal to it. An increase in the parameter  modifies the 
curve T1(m) with m close to zero. An increase in the parameter  sharply rises 
the rate of growth T1(m). 

If the diffraction line is observable when the dislocation density in the 
crystal is about 1010 cm ², then the correlation radius  can not exceed  3b, 
where b is the interatomic distance, otherwise the line would be smeared into 
a diffuse background, as it is seen by Fig. 6.3. 

Existence of large correlation radii in the slip plane is not realistic. Corre-
lation radius  predetermines the density of pile-ups of loops. Range of far 
bond of loops (and their pile-ups) in the elastic stresses field corresponds to 
the stability of the system as a whole. 

4. Models of long-range order in dislocation systems. Diffraction ef-
fects from the long-range ordering in the system of dislocations are consid-
ered on two models of periodic structures. 
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In the first model dislocation loops are placed exactly along parallel slip 
planes with a constant step  in the directions of 1

2 110j . In the second 
model loops of dislocations form the networks with the translation period  
 = 2  in two directions 1

3 111j  in the slip planes. There are taken the 

sizes of all loops to be , and degree of order 1. 
Periodic component T2 is calculated for the reciprocal lattice with the ba-

sis vector g, the module of projection of which on the plane of the disloca-
tions loops is 212g n j . 

Such an expression should be in the T2 Eq. (6.13) 
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Summation is carried out over the basis vectors g in the reciprocal lattice 
of the ordering of defects of each type . 

In the considered examples, the period of the reciprocal lattice 2  is 
considered to be equal to the expected value in the ensemble of dislocation 
systems, it is supposedly the same for all types of loops (  = 1,  , p). 

The form of the averaged periodic component T2 for ordering along the 
normal to the slip planes that creates the concentration waves of different 
lengths is shown in Fig. 6.4. 

Given an ideal periodicity of loops placement along planes with interval 
 the diffraction line would disappear in turbulent ( ) or in 

quiet ( ) waves. Under the concentration fluctuations with a period 
 when small dislocations loops the diffraction line is weaken, and at 

large loops is broaden, approaching by shape to Gaussian (Fig. 6.5). 
In crystals with a high concentration of large dislocation loops the one-

dimensional periodicities, if any occur, then in insignificant shares 1. 

                                                      
1 What difficulties are created by slip bands for measuring the average dislocation 
density in crystals are discussed in Ref. [104].  

100 a
250 a
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Fig. 6.4. Periodic component of the logarithm of harmonics when dislocation 

loops are placed with the given step along the normal to the slip plane:  
(1)  = 25 a,  = 50 d; (2)  = 100 a,  = 200 d.  

Dashed lines show the component T0(m) 

 
Fig. 6.5. Profile of the diffraction line of crystals with a periodic distribution 

of dislocations loops along the normal to the slip plane: (1)  = 500 d;  
(2)  = 250 d (  = 250 a). Dashed line for chaotic distribution of loops 
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Fig. 6.6. Profile of the diffraction line of crystals with the plane networks  
of dislocations loops (  = 250 a). Dashed lines for chaotic loops distribution 

Ordering of the dislocation loops with the formation of plane networks 
(sub-boundaries), accompanied by the appearance of the periodic component 
T2, leads only to an insignificant weakening of the diffraction line, as shown 
in Fig. 6.6. 

Transition of dislocations from chaotic distribution in volume to regular 
networks randomly distributed over crystallographic planes exerts little effect 
on the diffraction intensity distribution (as well in the case of the organization 
of walls from rectilinear dislocations [41]). 

5. Factor of the crystals size. When a small size of the scattering crystals 
the sine Fourier coefficients of the diffraction line appear the relative magni-
tude of which , as shown in Eq. (6.10), is related to the Fourier transform of 
the shape function of a crystal sk. 

If taken crystal in a plate shape of thickness  in the direction of normal 
to the reflecting plane, then 
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When calculating   (q, R) from Eq. (6.10) with a given function sk  
the sum over k-space reduces to a one-dimensional sum over kz, and it can be 
replaced by integral multiplied by the normalization constant  . Since 
under the integral it is appeared the function z zh k  from Eq. (6.9), which 
is odd in kz, then in the chosen coordinate system the quantity under review 
takes the form 
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Function in the square brackets of the formula Y(kz, ) is equal to zero 
when kz = 0 and approaches unity with a minus sign when kz   . 

Figure 6.7 gives a represent on effect of the thickness of scattering crystal 
and the size of dislocation loops on a value of the sinus harmonics of the dif-
fraction line. 

 
Fig. 6.7. Relative value of the sinus component of harmonics of the diffraction 

line in dependence on thickness of scattering crystal: (1, 3) (   ) = 100;  
(2, 4) (   ) = 10; (1, 2)  = 50 a; (3, 4)  = 500 a 
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While the thickness of a crystal is not too small (  > 1 m), the size of the 
dislocation loops affects the value of the sine harmonics more strongly: with 
increasing  by an order of magnitude,  increases by three orders of magni-
tude. Decrease in the relative thickness of a scattering crystal    becomes 
a significant factor with the small dislocations loops; in that case growth of  
goes ten times quicker. 

§ 6.3. Observability of the Dislocations System  
in the Diffraction Space 

General diffraction equation is splitting into simple expressions with the 
finding of measurable states of the dislocation structure of crystals. 

1. Mapping of the states of a dislocation structure in the diffraction 
space. Equation of harmonics of the diffraction line contains the sum of the 
integrals  (6.14) of the cylindrical Bessel functions (J0(x), J1(x)). 

Let us introduce the representation 
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in which the functions  1 2,t t  have the integral Hankel transform 
[92] 
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Due to Parseval equality [37]: 
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we obtain computing formula 



105 

 
    

21 4 2
2

0

2( ) 2 .s y s s ds
 

Here, y(s) denotes the elementary functions to which the 2 s  is re-
duced: 
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Formally, y(s) is the Laurent series [37], which does not have a common 

region of convergence of its two parts: expansions in positive and negative 
powers of the variable s, where the second-order terms are made vanish. 

Eventually 
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It follows that the state in the field of small dislocation loops is measura-
ble over higher harmonics of the diffraction line, and in the field of large loop 
sizes it is measurable over the initial harmonics. In the former case, the opti-
mal region of observations is the central part of the diffraction line with the 
small {HKL}, in the latter case it is “the wings endings” of the line with the 
large {HKL}. 

For observations in the intrinsic regions of the diffraction space there is a 
simple mathematical expression: 
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  (6.17) 

  
2 2 2

HKLQ H K L ; 

 0 1,C C  are crystallo-geometric constants for calculation of scattering 

by a polycrystal that contain the tensor coefficients ( )
ij  for all available 

slip systems: 
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111  {110} bcc: C0 = 16.278295, C1 = 8.769899; 
111  {112} bcc: C0 = 16.278295, C1 = 9.493694; 
110  {111} fcc: C0 = 10.852197, C1 = 6.265519. 

 
Figure 6.8 on the example of the model structure of bcc crystals demon-

strates intermediate state at an intermediate level of the dislocation loops sizes. 
Intermediate state is observable in a very limited number of harmonics of 

the order k = æ m (k = 1, 2, ) where æ is the ratio of the interval of the dif-
fraction line measurement to the period of the reciprocal lattice of crystal. 
Therefore, the parameters of the dislocations system will have to be deter-
mined over two equations of the model with different QHKL. 

2. Distinct correlation effects in the distribution of dislocation loops. 
Equation (6.17) represents chaotic distribution of dislocation loops (T  T0). 
Experience reveals the existence of local fluctuations in concentration of 
loops inherent to short-range order. 

Let us accept a correlation model describing the short-range order, as in 
§ 6.2. Parameters of Eq. (6.15) are subject to the relation  , R , as in 
reality the correlation is short-range, and small R are unavailable for observ-
ing since ~ æR k  where æ 1 . Under these conditions it can be used the 
approximation to the correlation component Eq. (6.12), (6.15): 
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Resulting equation with the parameter  proportional to volume of corre-
lation ellipsoid is reduced to the form 

 1 0 ,T T     
3 2

0 .HKLa Cc Q  
Function  arising in the three-dimensional correlation model does not 

depend on m. An approximation of T0 it is Eq. (6.17). 
Significance of the factor of space correlation under small and large dislo-

cation loops revealed itself on examples of bcc crystals with specified param-
eters, represented in Fig. 6.9. 
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Fig. 6.8. Regions of limitations for the model of diffraction observations  
(a) {110} and (b) {112} when an intermediate level of the dislocation loops 

sizes: (1)  = 100 a; (2 )  = 200 a. Dashed line indicates the increasing 
deviations from the exact theoretical equation 
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Fig. 6.9. Errors of the model of diffraction observations upon correlation 
in the system of dislocation loops ( /b = 3, /d = 3): (a) {110}  

(  = 30 a, d = 1011 cm ²) and (b) {112} (  = 300 a, d = 109 cm ²).  
Dashed and dotted lines, respectively, three-dimensional  

and two-dimensional approximation 
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Spatial form of the correlation for dislocation loops of large sizes 
,  is practically indistinguishable from the correlation in its plane 

with an equivalent parameter 

 
2 12 ,   ;p b d

 

 is interpreted as an effective radius of correlation in the slip plane. 
Correlation in the distribution of large dislocation loops is equivalent to 

an increase in their concentration by approximately 
2

1 2 p b  

times. The smaller the number of slip systems p, the more significant the role 
of correlation. 

3. Observable long-range order in the system of dislocation loops. Let 
there be correlation in the system of dislocations and long-range order in the 
arrangement of loops on the normal to the slip planes n  (  = 1,  , p). The 
proportion of ordered loops of their total number in a crystal is a degree of 
order . 

A periodic component will appear in the diffraction equation: 

 0 1 21 .T T T T
 

Component T2 (6.13) is calculated under the assumption that the distribu-
tion of loop sizes  and the distribution of order period  in the statistical en-
semble of dislocation systems are mutually independent and the same for 
loops of different type (  = 1,  , p). 

The one-dimensional reciprocal lattice of ordered dislocations in a crystal 
of finite size  can be represented as a periodic wave packet with a limited 
spectrum. In the reciprocal space peaks with spacing 1  and width 

1  will appear. Angle brackets denote the expected values of parame-
ters in the statistical ensemble of dislocation systems. 

Within restrictions area of the theory, when period of inhomogeneity of 
crystal distortions is much smaller than its size, variance of the distribution 

1
2  is subject to the relation 1

1 0.1. Here, it is taken into 

account that  
11 , and the expected  in the ensemble coincide 

with the average  over the crystal volume (according to the ergodic hypoth-
esis [44]). 

The approximate equation of the periodic component applicable for de-
termining the order parameters will be obtained using formula (6.16) under 
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asumption 2 1jR , where  HKLm a QR . When for each loops type 

of  there is only one translation vector j  n  (  = 1,  , p), the equation for 
periodic component takes the form: 

   
4 3 2

2 2
1

4 ,  2 .HKLT c a a C m m Q a   (6.18) 

To calculate diffraction on polycrystals with long-range order in the dis-
location structure, it is added the crystal-geometrical coefficient C2: 

111  {110} bcc: C2 = 5.411616; 
111  {112} bcc: C2 = 5.411616; 
110  {111} fcc: C2 = 3.607744. 

Figure 6.10 gives presentation of the effect of long-range order on har-
monics of the diffraction line when different parameters of the dislocation 
system. Increasing errors of the approximate equation with measurable of the 
order parameters are visible in dashed lines. 

The area of observability of long-range order in the dislocation structure 
of crystals is significantly limited in the diffraction space. With large disloca-
tion loops in crystals, the long-range order is practically unavailable for ob-
servation because of the suppressing effect of correlation, what is verified by 
simulation tests on model crystals, which are used for the examples given in 
Ch. 7. 

4. Diffraction model under conditions of limited observability of 
states of the dislocation structure. Averaging of the approximate function 
T = T0 + T1 by logarithmically normal distribution of  is reduced to deter-
mining the moments of this distribution [25]. (Deviations from randomness, 
when only a small fraction of loops sometimes forms regular networks, can 
be neglected.) 

Equations of the model of diffraction observations for real crystals take 
the form 
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Fig. 6.10. Diffraction line harmonics behavior when long-range order  
in the dislocation system:  

(a) {112} bcc (  /a = 30, d  = 1011 cm 2);  
(b) {113} fcc (  /a = 300, d  = 109 cm 2);  

(1)  = 0, (2)  = 0.75 (  /  = 2, /b = 2,  /d = 2) 

2

k æ 

 ln Âk 

2.30 

 

 

 

 

 

 

0.0 
0                                                           200

(a) 

2

 ln Âk 

k æ 

0.69 

 

 

 

 

 

 

0.0 
0                                                           200

(b) 



112 

Here, a  and  are the average normalized radius of disloca-
tion loops and the coefficient of variation of their sizes. 

The terms LHKL, MHKL independent of m include an additional correlation 
parameter . Their explicit expressions are given in [73]. 

By the equations of the model it is clear that the diffraction pattern is dif-
fer in sensitive to quantitative changes in the sizes of dislocation loops when 
they are of different qualitative levels. The study of the model reveals that for 
large dislocation loops there is a high sensitivity to correlation in the loop 
plane, and for small loops to correlation along normal to it. 

The effect of a long-range order in the system of dislocation loops, which 
is revealed by the averaged periodic component T2 (6.18) for crystals of finite 
size, is considered in § 7.3. 

Measuring interval in diffraction space: Coefficient æ denoting the ratio 
of observable diffraction spacing to the theoretical interval Fourier represen-
tation of diffraction line is important in subsequent determination of parame-
ters of the dislocation structure. Herein it is given a strictly mathematical der-
ivation of the formula to calculate correctly of æ. 

According to the geometry of experiment the length of the diffraction 
vector for crystallographic planes of type {HKL} has the formula [10] 

 

0sin cos 4 ,       2 2 ,HKL HKL
HKLq dq d

 

 
01 1

2 2
2 2 2 ,HKL HKL H LHKL K

 

where 2 HKL  is the interval to be measured of scattering angles with 
center of 02 HKL , and  is the wavelength of the radiation. 

Changing in the length of the diffraction vector near the reciprocal lattice 
site corresponds to small deviations {HKL} from their integer values in the 
reciprocal space of perfect crystal. In the Cartesian coordinate system (X, Y, Z) 

 
2 2 2 .X Y Zdq dq dq dq  

The coordinate system is constructed so that 
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  ,dH dK dL dt  

 

2 ,dq dt
a  

  
æ æ    0 æ 1 .
2 2

t
 

Experiment produces a diffraction intensity distribution along the length 
of the vector 

 

 

0cos 22  2 æ.HKL
HKLdq

a
 

From the equality obtained it follows that 

 

0cosæ  2 .HKL
HKLa

 
Precisely this is the measured part of the reciprocal lattice period of  

crystal 
2
a

. 

Observed interval under tetragonal distortions of crystals: For crystals 
with unit cell dimensions (a, c) and interplanar spacing dHKL [98] 
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the length of the diffraction vector is 
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With {HKL} deviation from the integer values by the same part of the re-
ciprocal lattice period it is follows 

 
,dH dK dL

a a c  
,adH dK dL dt
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 ,HKLdQ dt  
2 .dq dt
a

 

As a result for crystals with tetragonality extent 1c
a

 for the same dif-

fraction angles interval of (2 HKL) an observed part of the theoretical inter-

val is 
0

a
a  times smaller than for cubic crystals with lattice period a0. 
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CHAPTER 7 
ESTIMATION OF PARAMETERS OF THE DISLOCATION SYSTEM 
BY MEASURED HARMONICS OF THE DIFFRACTION LINE 

Equations of the diffraction theory became the basis of methods for iden-
tifying a system of dislocation loops model a real structure of deformed crys-
tals [72 73]. 

§ 7.1. Identification of a Random System  
of Dislocations in Strongly Distorted Crystals 

A system of dislocations loops is identifiable by means of the model of 
diffraction observations that corresponds to state of the object structure. 

1. Assessment of the structure state characterized by the level of dis-
location loops sizes. Equation of normalized harmonics of the diffraction line 

 
( )

,
T m

kA e  
which have the order of k = æ m in the interval of measurement æ from 

period of the reciprocal crystal lattice, can be represented in the form of a 
regression model of observations lnk kY A  (k = 1, 2, ): 

  .k kY z h   (7.1) 

Here,  

t
0 1,h hh  is the vector of the regression coefficients (t-

superscript denotes transpose), and  0 1,k k kz zz  is the vector of the basis 
functions of regression, which corresponds to the domain of definition of 
T(m) Eq. (6.19): 
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 (7.3) 

On the equation of the best agreement with the data is recognized the state 
of dislocation structure. Choose of the equation is realizable by sequential 
regression analysis of the observations Yk: 

(1) By the method of successive including in the observation vector  
(Y1,  , Yk) of higher order elements Yk (k = 2, 3, ) it is searched the largest 
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portion of observation interval [1, k], where the equation of approximation of 
the initial harmonics is adequate in the basis (7.3). If this equation is rejected 
with a high probability P already at small k, then there should go to the defi-
nition of kmin for the equation of approximation of the highest harmonics in 
the basis (7.2). 

(2) By the method of successive excluding from the observation vector 
   

max
, ,k kY Y  of lower order elements Yk (k = 1, 2, ) it is searched the 

off cut [k, kmax], in which the regression equation is adequate in the basis 
(7.2), and the ratio of its coefficients h1/h0 is well-defined and reaches a max-
imum value. Simultaneously, since Yk > 0, max 1 02æ HKLk Q h h  is 
minimized, and k approaches the allowed limit kmin. An estimate of the vector 

 
t* * *

0 1,h hh  gives a limitation on both the average loops sizes and the 

dislocation density: * *
1 0a h h ; 

2* * * 2
d 0 1 0 2h h h a . 

If there is no reasons for rejecting the regression equation in the basis 
(7.3) for the entire interval 1  k  kmax, where kmax is the largest order of the 
reliable harmonics kA  with the mean square error of measurements kA , 

then max2 æ HKLa k Q , thus the data suggest that the dislocation 
loops in crystals are large, and the average dislocations density 

1*
d 1 max

222 æ HKLQ ah k . The coefficient *
0h , when it is well 

defined, will show the lower estimate of the correlation parameter 
* *
0 1d h h . 

The equation is rejected with reliability not less than P if the weighted 
(with a weight 2 2

kk AA ) sum of N = kmax  kmin + 1 squares of residual devi-
ations exceeds (N  n) /(1  P), where n is the dimension of the regression 
coefficients vector [2]. 

Procedure for discriminating the equations of the diffraction observations 
model performs a nonparametric identification the system of dislocations. 

Systematic errors of the observations: The main systematic error of the 
data Ak arises from the splitting of X-ray line, which is a doublet of the 

1 2
–K K  radiation. Further it is shown that the error grows as 2k . 

Fourier coefficients of the diffraction doublet receive the expression 

 1 2 2cos ,( sin) ( ) . d s d s
k k k kA A w w k B A w k  

Here,  is the ratio of the inter-doublet spacing to the range of Fourier se-
ries expansion, and w1 and w2 are the weight fractions of doublet components 
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whose profile is described by the harmonics s
kA . A center of the expansion is 

chosen by a maximum of the diffraction intensity. 
Subject to that 1 , 

 
22 22 2

1 21 ( ) .d d s
k k kA B A w w k

 
Consequently, the observations that available by determining the physical 

profile of the diffraction line are of form 

  
2 2

0 1 2
1
2

ln  ln  .s s
k kA A A w w k

 
A shift of a center of the Fourier series expansion does not affect the  

result. 
There is a method of separating the lines of the diffraction spectrum with 

an optimal estimation of the Fourier coefficients s
kA  [69–70]. Such way of 

correcting the data Ak would be too costly. The best solution is to use the 
available information on systematic errors. 

2. Adaptive model for parametric identification of the dislocations 
system. Parametric identification is complicated by the presence of systemat-
ic errors of the harmonics of the diffraction line that grow with increasing of 
their order. Model of diffraction observations in the form allowing estimation 
of parameters should include information on regular deviations of the data. 

Let  be the vector of the dislocation structure parameters to be estimated, 
xk be an independent variable, and uk be the auxiliary variable compensating 
for the systematic errors of the original model and data. In the absence of 
errors, the vector of functions of the model is subject to equality 
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The model equations appropriate to different states of the dislocation 
structure differ by expressions of variables and parameters: 
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The components of vector  
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are the same in two equations of the model. (Parameter  is related to 
 by the equation given in [73].) 

In the vector of auxiliary variables u the components uk (k > 0) have the 
term u0 that makes up for not depend on k members of diffraction model in 
Eq. (6.17). For large dislocation loops a value u0 is negligibly small due to a 
weakly exhibited effect of spatial correlation (§ 6.3). 

Search for a missing information to accurately describe the real observa-
tions over the object goes in the process of identifying the model of object. 

When a non-parametric identification into the vector of basis functions zk 
(7.2) – (7.3) it is introduced component 2

2 ækz k . Supplementary re-

gression coefficient *
2h  appearing in h  is suitable for modeling the measured 

vector u. It is assumed that the variables uk contained therein are independent 
normally distributed random variables with the mathematical expectation and 
variance of 

     

2 0

* * 2 2 2 2 2
2 2 0 0 2 0,   .

k
k k k u k h k hu z h z h z z  

Measured vector of an auxiliary variables u performs the adjustment of 
the model in Eq. (7.4), through which parametric identification is made, re-
fined itself in concert with the estimate of the parameters vector  and ap-
proaching actual systematic errors û . 

There exists an infinite set of vectors  satisfying condition 
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for which fitting the model Eq. (7.4) is not worse than regression 
Eq. (7.1). An estimate, representing the physical reality, can be found only 
with the involvement of the information about the allowability of the quanti-
ties entering the vector . 

The information on the possible values of the dislocation density and the 
average sizes of the loops, experience provides. The order of value of the 
correlation parameter in the plane of dislocation loops is came up by theoreti-
cal calculations (§ 6.2). 

3. Nontraditional method of statistical estimation of parameters. Let 
the results of the experiment are represented in the K-dimensional sample 
space (K  kmax, when kmin = 1). A vector of diffraction observations  
A = (A1,  , AK) determines a point of the sample space. Let us assume that 
in the sample space there is a set of points {Ar} (r = 1,  , n) and their num-
ber of n  l, where l is the dimension of the parameter vector . (As elements 
of the set there can be independent repeated measurements of harmonics of 
the same diffraction line {HKL}.) Then the problem of l- dimensional esti-
mating of  can be reduced to l one-dimensional problems of parallel 
componentwise estimating of q (q = 1,  , l) at different points of the sam-
ple space. Randomization of points is a way to limit of the estimates bias due 
sampling. 

The measurements of A are considered as initial approximations to the 
true harmonics of Â . Each measurements vector from the set {Ar} is given a 
random vector of auxiliary variables u. Correlation of variables (A, u) can be 
neglected. 

A solution realizing the asymptotically normal form of the maximum 
likelihood under constraints on the parameters  in the form of Eq. (7.4) will 
be the stationary point of the Lagrange function [2]: 
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Here, 2
kA  are the variances of the measurements Ak, whose estimates are 

available from the experiment, 2
ku  are the variances of the variables uk that 

estimates to be refined in the process of optimizing the objective function, 
and k are the Lagrange multipliers. 

At each step of the optimizing sequence in the parameter space: 
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the measurements vector rA  for ongoing estimate q is chosen randomly 
from the set {Ar}. For approximate values of the remaining components of 
the vector  are taken their previous estimates on other independent meas-
urements. 

A starting point of the iterative process is any random vector  whose 

components q (q = 1,  , l) are within the allowable intervals , q q  and 

are related to each other by the coefficient  

*
1h  in the adequate with data {Ar} 

regression Eq. (7.1). 
In order not to complicate the objective function with the conditions for 

the optimization region the estimated parameters are represented by a bound-
ed function of some variable  on an infinite interval: 

 
     

1 1
2 2
   sin .q q q q q q

 
Derivatives of the functions of the model Eq. (7.4), which are involved in 

the optimization procedure, will be of the form 

  cos ,k q k q qg x H  
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To calculate a step of the iterative optimization process there are obtained 

simple formulas: 
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These include the weighting coefficients wk and the generalized devia-
tions ke  calculated at the sample point r: 

 
12 2 2 ,

k kk A k uw Â
 

 ( ( .) )k k k k k k ke Â A Â û u g  
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Required  ,k kÂ û , for which is true the model Eq. (7.4), initially are 
taken equal to measured values (Ak, uk). Then using the Lagrange multipliers 

k, there are calculated the running corrections 

 
1 2( ) ,

kk k k k k AÂ Â A Â
 

 
2 ( ) .

kk k k k uû û u
 

Variances 2
ku  are estimated at each iteration by the standard deviations 

of ,ˆk ru  (r = 1,  , n) from the mean. 
Iteration step adjustable by the coefficient 0< i 1 (i = 0, 1, ): 

 
1 ( ),i i i i i

 

 
1 1,   i i i i i i i iÂ Â Â û û û  

is considered to be allowable if the functional of weighted discrepancies is 
decreased, that is, 
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G G w g
 

As a rule, a local minimum G is achieved in three or four iterations. If in 
that the deviations from the stationarity conditions of the objective function 
of  for all points of the sample space (r = 1,  , n) are less than allowable 
errors: 

 
   

1
1, , ,

K

k q k
k

g q l
 

    max| | | |,    1, , ,k kÂ û k k  

where 0 1 , the optimum *  is likely being found. It is 
still necessary to verify that the obtained Â  are within the confidence range 
of the measurements of A and that the vector of functions of the model 

 
* *,Âg g  no significantly deviates from zero. 
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For checking there are calculated statistical criteria 

 

 

 

2 2

2*

1
1 1

2
2

1 1

,

.

k

k

A

k g

n K

k k
r k r

n K

r k r

n

n

Â A

g

 

Correction 2 1 4 nK  takes into account the presence in the 
model equation of two inexact variables and four estimated parameters. Un-
known variances 2

kg  can be estimated by the standard deviations of the re-

sidual discrepancies *
kg  from the means for n points. 

For any distribution of {Ak} and {gk} the solution is rejected with a relia-
bility not smaller then P if either 1  or 2  is greater than 1K P  [2]. 

Successful search results from random start points can be considered the 
independent realizations of a random vector * = ( *). In substance, by a 
randomized computational experiment, a random sample { j

*} (j = 1,  , M) 
is extracted from a completely unknown distribution, although it is assumed 
to be the same for all j. Obtained sample is used to constructing the confi-
dence intervals for estimates of the model parameters of the object in given 
space 

 d ,  ,  ,  .baO
 

The best for this purpose, there will be the self-correcting over sample 
confidence intervals that behave correctly under the transformations [15]: 

 
2  2 1 6 ,P y t P v t P M

 

 
3

2
2 3 2  1 , ( )   ,M v  

 1
     2,  3 .( )n
M

n j
j

y y M n
 

Here,  is the standard deviation of the sample mean y ; v is the asym-

metry coefficient of sample; 
 1 , 1 2Mt P t  are the percentage points of 

the t-distribution with (M  1) degrees of freedom for a given confidence 
probability P = 1  . 
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With a probability about of 99% no less than 90% of the realizations of 
any distribution of y  q

* (q = 1,  , l) are between the two extreme values 
of sample with the size M = 60 [37]. Thus, sample of size M = 60 can consid-
er to be sufficient for constructing approximate confidence intervals such that 
confidence probability is not less than the given P. 

The developed method is used to estimate the parameters of a random sys-
tem of dislocations with large ( 250a ) or small ( 50a ) dislocation 
loops. With an intermediate level of loops sizes the estimation would to be car-
ried out using two the model Eq. (6.17) with different QHKL, so there will re-
quire to introduce the matrix form of the method of Lagrange multipliers [2]. 

4. Verification of the method accuracy on model crystals with a given 
dislocation structure. For the optimal estimation of the parameters in differ-
ent states of the dislocation structure of model crystals were selected the most 
informative diffraction lines (§ 6.3): {110} bcc when small loops of disloca-
tions in iron crystals; {113} fcc when large loops of dislocations in aluminum 
crystals. The given observation interval in fractions of the reciprocal-lattice 
period is æ = 0.1. Parameters of the dislocation system in model crystals are 
listed in Table 7.1. 

Table 7.1. 
Identification of a system of dislocation loops by data  

of the simulation measurements 
Model 
crystal  

Exact values of 
the parameters 

Approximate 90% 
confidence 
intervals of 
estimates 

Limitations from the 
preliminary regression 

analysis 

 bcc (Fe) 
111 {110} 

d = 1011 cm ² 
/a = 25 

/  = 0.2 
/b = 2.0 

/  = 0.2 

[1.0; 1.7] 1011 cm ² 
[23; 27] 

[0.19; 0.22] 
[1.6; 1,9] 
[0.2; 0.3] 

 
11 2

d (2.2 0.4) 10 cm

  
(k  7) 

 fcc (Al) 
110 {111} 

d = 109 cm ² 
/a = 500 
/  = 0.2 
/b = 2.0* 

[0.9; 1.2] 109 cm ² 
[460; 560] 
[0.19; 0.22] 
[1.5; 1,8] 

 

10 2
d (2.3 0.5) 10 cm

 
(k  20) 

* Taking into account the parameter of normal correlation ( /d = 3.0). 
 
Measured values of the harmonics Ak were modeled by independent nor-

mally distributed random variables with theoretically calculated mathemati-
cal expectation Âk and with one and the same standard deviation  = 0.01. 
Generated sample of vectors {Ar} (r = 1,  , n) is minimally necessary, that 
is n = l = 4. Deviations of data of the simulation measurements relative to the 
regression lines, by which the states of the structure are identified, are shown 
in Fig. 7.1. 

29 2a
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Fig. 7.1. Data of the simulation measurements for model crystals:  
(a) bcc  Fe; (b) fcc  Al. Strokes show deviations of approximate the model 

equations from calculated theoretical curves 
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According with regression estimating the level of dislocation loops sizes 
the limitations are established for local parametric identification: 

 
10  50          for small loops  (Fe)

250  1000    for large loops   (Al)

a

a
 

The smallest size of loops is compatible with the calculated value of the 
dislocation core that within b  r0  7b [55]. Approximate limiting larger size 
of loops is indicated by the electron microscopy of dislocation pile-ups. 

Allowable values of the dislocation density follow from the experience; 
for variation coefficient of loops sizes and correlation radius there are stated 
the theoretically possible ranges (§ 6.2): 

 

8 12 2
d10     10  cm ,

0    0.3,

0    3.0.b  

Within the area of physical limitations all values of the model parameters 
of object are equally probable. 

Results of verifying the method of the identification of system are sum-
marized in Table 7.1. There are presented the average confidence intervals of 
estimates of structural parameters over 60 independent random samples with 
the size of 60 measured values of the vector . 

The method developed correctly determined the structure of model crys-
tals. Dislocation loops system is complete identifiable with the contribution 
of a priori information. 

The sensitivity of estimates to the quality of a priori information has been 
studied in [73]. The distinguishability of sizes of large dislocation loops dete-
riorates with an increasing upper allowable boundary. What is important, this 
does not result in a serious loss of accuracy of the dislocation density esti-
mates. 

The effects of long-range order in the system of dislocations: If the order-
ing effects are significant, they are added to the systematic errors of the mod-
el of observations, and the identification is adapted to them. 

When generating data for model crystals, the exact periodic component T2 
in the form of Eq. (6.13) and (6.16) was averaged over the ensemble of dislo-
cation systems by the Monte Carlo method. As an approximate probability 
density of the parameter 1  deviations about the expected value 1 , the 

Gauss function is taken with the standard deviation 1
1 0.1 . 
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Table 7.2. 
Estimates of the main parameters of the dislocation system  

with availability of long-range order 

Model 
crystal  

Specified 
parameter 

values 

Approximate 90% confidence intervals  
of estimates 

Dislocations density 
2

d [cm ]  
Average radius 
of loops a  

 bcc (Fe) 
111 {112} 

d = 1011 cm ² 

a  = 25 

 = 0.75 

 3  

 [0.7; 1.3] 1011   [22; 27]  

 [0.9; 1.2] 1011    

 fcc (Al) 
110 {111} 

d  = 109 cm ² 

a  = 500 

 = 0.50 

 2   

 [0.6; 0.8] 109   [461; 556]  

 [0.8; 1.0] 109    

* Method for estimating the density of dislocations when additional parameters 
limited in the allowable region (§ 7.4 and § 8.2). 

Table 7.2 shows the obtained estimates of the main parameters of the sys-
tem of dislocations when there are correlation, as in Table 7.1, and long-
range order in the distribution of loops over the slip planes. 

Analysis of harmonics of the diffraction line in different states of the 
structure gave estimates with insignificant bias relative to the true dislocation 
density. 

Comparative estimates of the dislocation density by the width of the dif-
fraction lines: By M.A. Krivoglaz theory the dislocation density d calculated 
from the width of the diffraction line at all does not depend on size of loops 
when these are considered a large. A network of large dislocation loops 
broadens the line like chaotically distributed rectilinear dislocations [39]. 

Equations by M.A. Krivoglaz for the diffraction lines of crystals with dis-
location loops resulted in the following formulas: 

 

 
 

 
 

2

d 1

very strongæ
crystals distortions;

 not very strongæ
 crystals d

1 ,
2

istortions.

2

24 ,

D

HKL

HKL

a Q

B
a Q

 



126 

Here, D  is the variance of the theoretically Gaussian diffraction intensi-
ty distribution; B is the integral width of the distribution in Cauchy (or Lo-
renz) form. Both formulas are valid near the diffraction peak with a large 
QHKL only the limitations to first formula are stricter. Those are multipliers of 
 = a /b,   10 [39]. 

For model crystals of iron and aluminum the central parts of the diffrac-
tion lines (æ = 0.025) were recovered using the exact theoretical harmonics 
{Âk}. The value of D  is determined from the second moment of the diffrac-
tion maximum predicted by the harmonics. The integral width B is obtained 
by numerically integrating the function represented by the Fourier series. 
Thereto has checked stability of the results when increasing dimension of the 
harmonics vector {Âk}. The values of d  for different methods of calculation 
are given in Table 7.3. 

Table 7.3. 
Estimates of dislocation density by the width  

of the diffraction lines in different states  
of structure of model crystals 

Diffraction line Model parameters 
Estimated value 

d D   d ,B a  

 {110} Fe 
d = 1011 cm ² 

a  = 25 
2 1011 5 1011 *  1011 2 1011 * 

 {113} Al 
d = 109 cm ² 

a  = 500 
3 1010 5 1010 * 3 109 9 109 * 

* When there is a correlation as in Table 7.1 

If to raise the dislocation density in a model with large loops up to 
1011cm ², the formula of Gaussian broadening D  shows a value close to the 
true value of d   3 1011 cm ². Distortion of model crystals of aluminum is 
not so strong in order to a peak acquired a Gaussian shape, and the estimate 
of dislocation density proved to be overstated by more than an order of mag-
nitude. Formula of the integral width B in principle fine estimates the disloca-
tion density when the dislocation loops are small and of precisely known size. 

Usually it is used the formula for very strongly distorted crystals in as-
suming of rectilinear dislocations. 
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§ 7.2. Examination on Practical Identifiability  
of the Dislocation Structure  

for Test Specimens 

For practical tests used the data of measuring the diffraction line {110} 
the 01Kh5 steel in martensite-quenched and 50%-deformed states that were 
received by D.A. Kozlov. 

X-ray measuring has been made in the Fe K  radiation under the greatest 
possible range of 2 {110} = 5.4 degrees with step 0.1  at which the counted 
pulses uncorrelated. For randomization of instrumental errors were carried 
out four passes of line at point counting time of 10 s. Complete X-raying re-
peated after new install of specimens. The ratio of observation interval to the 
reciprocal lattice period of Fe crystals consists of æ = 0.12. 

The reference line used as an instrumental profile was measuring on the 
annealed specimen. Method of optimal estimation of harmonics of the physi-
cal profile of the measured diffraction line is described in Ch. 9. 

Sequential regression analysis of diffraction observations to assess the 
state of the structure of specimens goes through two stages. 

In the first stage, a length of the interval [1, k] is revealed, where the ap-
proximation of initial harmonics by Eq. (7.3) becomes inadequate with the 
reliability P > 0.5 when the criterion  > 2. 

 

3.0    ( 4 ,
Quenched spe

)
cimen: 

6.3  ( .)   5
k
k  

 

2.6      13 ,
Deformed specimen :

2.9      
( )

.)14(
k
k   

Discrepancy between the measurement data of quenched specimen and 
the regression Eq. (7.3) is revealed at the very beginning of the observation 
interval, and it sharply increases. Deviations of the measurements of the de-
formed specimen from the approximating straight line of Eq. (7.3) increase 
gradually towards the end of the observations interval that is expectable since 
the real observations {Yk} contain systematic errors proportional to k2, as 
consequence of splitting the diffraction doublet 1 2

–K K  (§ 7.1). 
At the second stage to account for systematic deviations from regression 

model in the basis functions vector  0 1,k k kz zz  it is enabled component 
2

2 ækz k . 
In Table 7.4 the estimates of regression equations are presented for stand 

out subsets of observations in their own bases over states of the structure. 
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Table 7.4. 
Classification of the dislocation structure states  

of the test specimens 
Structure 
forming 
process 

Coefficients of regression equations Structure parameters 
limitations h0 h1 h2 

Martensite 
transfor-
mation 

0.0132  
 0.0003 

0.3326  
 0.0155 

0.000138 
 0.000001  

(5  k  17) 
Plastic 

deformation 
(50%) 

0.000379 
 0.000408 

0.000529 
 0.000023 

0.000033 
 0.000002 (1  k  17) 

 
The coefficient h2 is significantly higher for the quenched specimen than 

for the deformed one, although herein the splitting of the martensite doublet 
is an order of magnitude smaller than the splitting of the doublet 1 2

–K K . 
An additional systematic errors arise owing to the thin-plateably form of mar-
tensite crystals (§ 6.1). 

Agreement with the measurement data within indicated ranges is not re-
jected by statistical checks: the probability that the model does not corre-
spond to the data, P < 0.5. Dispersion of measurements and the regression 
curves for test specimens are shown in Fig. 7.2. 

Sequential regression analysis of the data for 01Kh5 steel reliably reveals 
that the dislocation structures that arise during the martensitic transformation 
and during plastic deformation belong to different classes over the level of 
dislocation loops sizes. Conclusion does not disagree with physical represen-
tations. The deforming in rolling can really create large dislocation loops. 
The jump-like process of martensite transformation is accompanied by local 
plastic deformations for relieving stresses and the formation of large loops of 
dislocations is not anticipated. 

When large dislocation loops in the structure of plastic deformation the 
estimate of the coefficient h0 is completely uncertain (Table 7.4). To reveal 
the spatial correlation of large loops there are very large æ required for lines 
with large {HKL}.1 

In the model for structure of bcc crystals two types of dislocation loops 
are assumed to be equiprobable: 111 {110}, 111 {112}. The limitations in 
the space of parameters of the model are the same as in § 7.1. 
  

                                                      
1 M.A. Krivoglaz came to the conclusion that precisely at these conditions in 
principle there is measurable the density of dislocations when large network and 
correlation within a sphere for radius of “shielding” [40]. 
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Fig. 7.2. Regression curves of the diffraction observations for 01Kh5  
steel specimens with different processing:  

(a) quenching for martensite; (b) rolling to strain of 50% 
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Fig. 7.3. Empirical distribution of the measurements of dislocation density  
( d ) and average loops sizes ( a ) depending on the type of structure:  

(a) martensite transformation; (b) plastic deformation of 50% 
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Search for an acceptable estimate of parameters with a random choice of 
an allowable starting point is considered as a computational experiment. Es-
timate is acceptable if an agreement of the model with the data of the diffrac-
tion observations is not rejected by statistical criteria. Acceptable estimate is 
considered to be a measured value of the vector of structural parameters. 

For each test specimen in the course of computational experiments on 
their own model of diffraction observations were accumulated 9 10³ of 
measurement results. 

Figure 7.3 shows the distribution of measured values of dislocation 
densities and loops sizes. The frequency of occurrence of random varia-
bles in the intervals of the grouping is normalized to the width of the in-
terval and sample size. 

The histogram indicates approaching to the point estimate of the max-
imum likelihood, corresponding to the maximum of density of the a pos-
teriori distribution when uniform a priori distribution of parameter in al-
lowably region [2]. 

Table 7.5. 
Estimates of the dislocation system parameters  

in the specimens of steel 01Kh5 
Structure 
forming 
process 

Approximate 90% confidence intervals 
Dislocations 

density 
2

d [cm ]  

Average 
radius of 

loops 
a  

Variation 
coefficient 

 

Correlation 
radius 

b  

Martensite 
transformation 

[0.7; 1.2] 1011 
(1.0  1.6) 1011* 

[21; 26] 
(21  22)* 

[0.19; 0.22] 
 

[1.5; 1.9] 
(2.0  2.1)* 

Plastic 
deformation 

(50%)  

[3.1; 4.0] 109 
(2.5  4.0) 109* 

[456; 522] 
(500  536)* 

[0.18; 0.22] 
 

[1.4; 1.8] 
(2.0  2.1)* 

* The most plausible estimates by histograms maximum. 

Presented in Table 7.5 confidence intervals for parameters of the system 
of dislocations in considered structures there are produced on the average  
900 random samples of size 60 extracting from total sample of data. The 
nearly maximum-likelihood estimates of the main parameters are also given 
in Table. 7.5. 

In practice, analysis of a random system of dislocations given rise to al-
lowable, from a physical point of view, description of dislocation structure. 
The best accuracy of the parameters for large loops of dislocations in the 
structure of plastic deformation will be ensured when choosing the most in-
formative diffraction line, precisely with a large value of QHKL. 

With the quality level reached of the model of diffraction observations, 
a reliable identification of the dislocation structure of the deformed crystals is 
possible with minimum expenses to the experiment. 
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§ 7.3. Determination of Long-range Order  
in the Dislocation Structure of Crystals 

The system of dislocation loops with periodic arrangement on slip planes 
models the structure of martensitic transformation (small loops), as well as 
slip bands in the structure of plastic deformation (large loops). With large 
loops of dislocations, the long-range order is practically inaccessible to ob-
servation. The order parameters in the system of small loops of dislocations 
are in principle measurable by the initial harmonics of the diffraction line 
with large indices {HKL} (§ 6.3). 

1. Diffraction observations model for estimating the ordered system 
of dislocations. The general equation of the harmonics of the diffraction line 
is transformed into a model of observations, which makes it possible to 
measure long-range order parameters simultaneously with the dislocation 
density: 
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The area of definition of the observations model, within which the ap-
proximation of the diffraction theory equation is exact, is limited by the har-
monics order of klim. 
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When averaging the periodic component, the expected value of the func-
tion of the random variable 1 , which probability of deviation about the dis-
tribution center 1  rapidly decreases (§ 6.3), is calculated using the expan-
sion to the second central moment [105]: 

  1

2331 1 11 3 ,  1
1 0.1. 

In the model of diffraction observations, the vector of parameters 
 has two components:  – the being determined parameters of the ob-

ject;  – other parameters of the dislocation system modeling the object, 
which make an auxiliary role in optimizing. 

The initial approximations of the parameters  are determined on the 
most accurate estimating the regression coefficients of the data Yk =  ln Ak: 

   0 0 1 1 0 1  ,  .k k k k k kY h z h z z t z x  

Vector {Yk} (k = 1, 2) includes harmonics for which we can neglect 
the quadratic in k æ term of the regression equation. 

If the regression equation is not rejected by statistical test, given in 
§ 7.1, the coefficients (h0, h1) are positive and statistically significant, 
then the observations model is applicable for estimating the parameters 
vector of . 

For crystals with small dislocation loops in the region of limitations of the 
diffraction observations model (7.5) there can be a minimum required num-
ber of harmonics, therefore, should accept klim = 3. 

2. Method of measuring the density of dislocations and the degree 
of order by the slip planes. Different approximations of the theory dif-
ferently distort the calculated initial harmonics Ak relative to true harmon-
ics Âk. For example, when k  0, the inaccuracy of equation of the dif-
fraction observations model decreases, but the inaccuracy of the object 
model itself – with an approximate description of the displacement field 
created by dislocation loops in the crystal – increases. 

It can be expected that in reality, on substantially limited interval  
(1  k  klim), systematic errors of the predicted harmonics of Ak are close 
to uniform. 

Assume that the squares of deviations from the true harmonics of Âk, 
which are made up of data errors and model inaccuracies, are proportional to 
the variance of the measurements of 2

k  with an approximately constant un-
known factor of . Let's redefine the problem as the estimating by a data 
sampling {A } with the covariance matrix 
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With a normal distribution of the sample with a covariance matrix propor-

tional to the unknown factor, the maximum likelihood method leads to the 
following objective function of model optimization [2]: 
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Here, n is a sample size of the original data; m = klim is the dimension of 
the vector of observations {Ak}. 

The matrix of the second derivatives of the objective function of H and 
the gradient vector of  are calculated together with the coefficient , which 
adjusts the model in the process of approaching the optimum point  [2]: 
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A search of the optimum is carried out in the region of allowable val-
ues of the parameters of the object model that are uniquely related with 
the vector : 
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This involves additional information from the theory that diffraction line 
is detectable, when the period of ordered arrangement of the loops is in the 
interval  0.1  under the assumption a weakly inhomogeneous dis-
tortions field in a crystal of size  (Ch. 6). 

To remain within the allowable region, moving from a random starting 
point 0, let us introduce the transformation of parameters: 

 
       1, 2,

1 1
    sin .
2 2

3q q q q q q q
 

Operating vector of parameters  can vary in infinite limits. 
For the starting point 0, we choose random variables from the intervals 

of deviations from the regression coefficients: 0 10 1,  h hh h  (for any 
distribution law, the probability that random deviations do not go beyond the 
established limits, P = 0.5 [37]). 

Having a good initial approximation, it is possible to optimize  without 
restrictions: the objective function will begin to rise earlier than the step, reg-
ulated by the coefficient 0 < (i)  1 (i = 0, 1, ), will reach the limit of the 
allowable region 0 10,  0e e . 

In order to reduce the correlation of estimates { q}, the optimization step 
for each q will be calculated from random subsamples of data with the excep-
tion of one vector of observations A qj : when calculating the q-th component 
of the gradient vector g , the summation is carried out over r  jq, where jq is 
a random integer from the interval (1, n). 

Upon reaching the optimum point , it is necessary to validate the model 
for agreement with the observations data and test the statistical significance 
of the model parameters estimates. 

If the model fits the data, the residual deviations are biased estimate of the 
data errors, what to be test by statistical criterion involving correction on bias: 

  

21 2
,

1 1

1 ,
n m

k r k
r k

n l m  

Considering that in (n m) equations of the model there are (l + 1) fitting 
coefficients (l is the dimension of the estimated parameters vector ), the 
minimum required of data sample size is 1n l m . 

The model will be rejected as not adequate to the data with a degree of 
certainty of at least P if 1m P  [2]. 

With a good agreement of the model with observational data, the matrix 
H 1( ) approaches the covariance matrix of the parameters V  suitable for 
test the statistical significance and non-correlation of the estimates in the vec-
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tor . Acceptable estimates are considered as measured values of object 
model parameters. 

Running computational experiments with a random choice of an allowa-
ble starting point 0, we obtain a sufficient sample of measurements to con-
struct confidence intervals for the dislocation density  1

d 2
2e a  and 

a degree of order 2 , as well as a lower confidence limit for period of 

order 3 3e . 
Approximate confidence intervals, self-corrected over a sample of meas-

ured values of the parameters, are constructed using the method described in 
§ 7.1. 

3. Verification of estimating the ordered system of dislocations to ac-
curacy using simulation experiments. The diffraction line {112}, best on 
observability of the long-range order in bcc-crystals, was chosen into interval 
of æ = 0.2 from the theoretical period. Parameters of the model crystal are 
given in Table 7.6. 

The measured harmonic values of the diffraction line of Ak are modeled 
by independent normally distributed random variables with a theoretically 
calculated expectation Âk and with the same standard deviation  = 0.01. 
Generated data sample of the minimum required size of n = 4. 

Figure 7.4 shows dispersion of simulated data and the error of the obser-
vations model where allowing for the long-range order in the system of dislo-
cations. Systematic deviations of logarithms in Fig. 7.4 are more deviations 
of the approximate beginning harmonics from the exact theoretical Âk, but 
a little. 

In Table 7.6 are presented the results of measuring the parameters of 
model crystals using the initial harmonics of the diffraction line (klim = 3). 
The average confidence intervals for the being determined parameters are 
given, constructed from 60 independent random samples of size 60, extracted 
from a total sample of 900 measured values of the vector . 

Table 7.6. 
Parameter estimates for the long-range order  

in the system of dislocation loops according to simulation data 

Model crystal  Specified order 
parameters 

Approximate 90% confidence intervals 
of estimates 

Dislocations 
density 2

d [cm ]  Degree of order  

 bcc (Fe) 
111 {112} 

d = 1011 cm ² 

a = 25 

 = 0.2;  3   [1.5; 2.2] 1011  [0.22; 0.36]  

 = 0.5;  2   [1.7; 2.6] 1011  [0.45; 0.61]  

 = 0.8;    [2.5; 4.1] 1011  [0.71; 0.82] 
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Fig. 7.4. Data of simulation measurements of the diffraction line of a model 
crystal with the long-range order in the system of dislocation loops:  

(a)  = 0.2, ; (b)  = 0.8, . Solid line is exact theoretical 
equation and dashed line is approximate equation of the observations model 

 3  4

(a) 

 ln Âk 

 k 
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The order states in the dislocation structures of model crystals are distin-
guishable, despite of the estimates biases. The lower confidence limits of the 
long-range order period overlap when  . 

The method yielded acceptable results of determining the long-range or-
der in the system of small dislocation loops, even with a minimum sample of 
the original data. 

§ 7.4. Method of Identification of the Dislocation 
Structure while Tetragonal Lattice of Crystals 

in Martensite of Steel 

Object properties allow measuring the dislocations density by limiting 
other parameters of the dislocation structure model in a priori intervals 
[68]. 

1. Diffraction imaging of dislocations system in crystals of tetrag-
onal symmetry. In the diffraction space, the bounded region of the 
observability of the system of dislocation loops, which results from the 
shearing martensite transformation, have been found: 
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Harmonics of the diffraction intensity distribution Ak are determined 
by the function T( ) averaged over loops sizes , where q is the diffrac-
tion vector for crystallographic planes with indices {HKL}; (a, c) are the 
dimensions of the unit cell of a tetragonal crystal lattice of volume v = 
a2c. The order of harmonics k corresponds to the observation range, 
whose fraction from the period in the reciprocal space is æ (§ 6.3). 

The number of dislocation loops appearing in the crystal approximate-
ly is a Poisson random variable . The expected number of loops  is 
large, but much smaller than the number of atoms in the crystal of N. 



139 

By parameter   2  there is measured the ellipsoid of correlation in the 
loops distribution when the correlations of their coordinates in the slip planes 
and over the normal thereto have the parameters , R . The values of , 

 are received equated to means for all p slip systems (  = 1,  , p) assum-
ing that variations of the correlation extent over slip systems can be neglect-
ed, since there are large fluctuations in the number of loops that fall into them 
when N . 

Under scattering by crystals in the form of a thin plate, such as martensitic 
ones, the intensity distribution becomes asymmetric. Homogeneous defor-
mations of crystals under transformation in a matrix shift the intensity distri-
bution. 

The exact Fourier coefficients of the distribution of the intensity of scat-
tering by martensite crystals should to be written so (§ 6.1): 

  ,j ij ii T
k k

q RA iB e e i e  

 ( ) 1,   1.k k T k  

Herein sine harmonics appear, and cosine harmonics decrease more 
quickly. Tensor of uniform extension of lattice ij creates a shear coefficient. 

In reality, since martensite crystals are strongly distorted by dislocations, 
the displacement and asymmetry of a significantly smeared distribution of the 
scattering intensity are became only by a small error in the model Eq. (7.7). 

To calculate the diffraction on polycrystals, the sums of scattering intensi-
ties in the HKLq  direction are averaged by all possible random aggregates of 
crystals. The general diffraction equation for polycrystalline systems is con-
structed in § 8.1. 

Let the Z axis of the Cartesian coordinate system (X, Y, Z) coincides with 
the normal to the reflecting plane {HKL}, and along it the diffraction vector 

HKLq  is directed. Fluctuations of the parameters of the system of dislocations 
in scattering crystals are neglected. Then the harmonics of the scattering in-
tensity distribution along the Z axis are described by Eq. (7.7), where there is 
one nonzero component of the diffraction vector, precisely qz, and of all the 
tensor coefficients only     1, ,zz p  are retained. The mean zz  
for existing slip systems is transformed into the crystal-geometric coefficient 
of 0. 

When tetragonal body-centered lattice of crystals there are changed the 
Burgers vectors b and the normal vectors to slip planes n: 

 
     ,
2
a cu v w

a
b i j k
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2
2 2 2      ,a ah k l h k l

c c
n i j k

 
 (i, j, k) is an orthonormal basis, and uvw {hkl} are the indices of the slip 

systems. 
In the numerical value of the crystal-geometric coefficient 0 appears a 

correction C0 to the constant of bcc crystals (§ 6.3): 

 
       

0 0

2
0

16.278295 ,

12.4 7.75   0  1 0.09 .

C C
cC
a

t t t
 

Slip systems are 111 {110}, 111 {112}. The calculated interval is 
agreed with the experimentally determined maximum tetragonality of crys-
tals in the martensite of steel [52]. 

An increase in the coefficient 0 indicates that the tetragonal body-
centered lattice undergoes a greater disordering by dislocation loops.1 

2. Measurement of dislocation density in a tetragonal martensite with 
adaptation to systematic errors in the observations vector. Original data 
for identifying the dislocation structure formed during quenching of steel are 
the parameters of the model of the observed diffraction multipletlet. This is 
a narrow spectrum of lines that displays the phase state of the object. 

In the model of diffraction spectrum the shape of all lines, the number of 
which n is considered known, is approximated by harmonics 
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where Âki are the true harmonics of spectrum lines, wi and zi are the 
weight fractions and shifts of lines relative to the origin. 

In the theoretical interval of the Fourier representation, when the relative 
shifts of the lines are negligible, the harmonics of the approximate shape of 
spectrum lines are approximately equal to the weighted mean of the true 
harmonics. 

The only {110} multiplet that allows determination of parameters of the 
martensitic dislocation structure is contaminated with the {111} line of fcc 
crystals of the matrix phase.1 
                                                      
1 The fcc crystals are quite clearly more stable to the disordering of the periodic 
structure: 0 = 10.852197 (§ 6.3). 
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Let us consider a theoretical example of the diffraction spectrum for a 
two-phase martensite with specified the phase composition ( –phases with a 
carbon concentration of 0.05 and 0.005 in fractions of 2:1) and the disloca-
tion structure parameters  

12
d 10 cm ², 25a . For the deformed 

state of the matrix –phase we can assume the allowable parameters 
 

9
d 3 10 cm ², 1000a . Additional parameters of the dislocation 

system taken to be the same    0.2, 2, 2b d . 
Figure 7.5 gives representation about distortions of harmonics of the true 

shape of the martensite line in observations data. An extent of distortion 
strongly depends on the fraction of the –phase with an alien dislocation 
structure, as in the model of diffraction spectrum the shape of all lines is av-
eraged. 

Under conditions of an increased uncertainty, it makes sense to put prob-
lem of determining the density of dislocations with the use of a priori infor-
mation on the allowable values of the remaining parameters of the dislocation 
structure. 

 

Fig. 7.5. Predicted distortions in the model of diffraction spectrum: solid line 
is the exact harmonics of the strong martensite component; dashed lines are 

harmonics of an averaged shape of the spectrum lines when the specified 
fraction of matrix –phase is (1) 0; (2) 0.05; (3) 0.20 

                                                                                                                  
1 Precipitate of the smallest carbon particles does not affect the diffraction inten-
sity distribution; only reduces it with regard to the diffuse background [39]. 
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Equation (7.7) is transformed to the model of diffraction observations 
suitable for estimating parameters when existing distortions of the data: 
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0 0 min
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  (7.8) 

(t, xk) are independent variables for the reflection {HKL}; uk is an auxilia-
ry variable that compensates the systematic errors of both the model and the 
data. 

In the vector   

t  of estimated parameters as the major com-
ponent is involved the average dislocations density: 
 d dln   ln ² 2 ,     2  ² .a Na c  

The remaining parameters of the dislocation system mixed after averag-
ing T( ) in Eq. (7.7) over the logarithmically normal distribution of loops 
sizes . 

Additional components of the vector N only indicate the upper boundary 
of the average radius of the dislocation loops: 

 
 .    a e  

Mathematical expressions for the additional components  and  are giv-
en in [68]. 

Data for estimating the parameters these are harmonics of the diffraction 
line Ak, that satisfy the restrictions of the observations model. The lowest or-
der of the necessary harmonics is denoted kmin. 

Systematic biases of the higher order harmonics (k  kmin) can be approx-
imated by the orthonormal Legendre polynomials Pl(z) [37]. 

Neglecting the differences in the shape of the spectrum lines, we obtain 
the sampling vectors of harmonics {Ar} (r = 1, 2,  , m). The dimension of 
the vector A = {Ak} (k = 1, 2,  , K) is equal to the highest order kmax of the 
well-defined harmonics of the physical profile of the measured multiplet. 

Let us suppose that in sample all vectors A have the same distribution 
with the same covariance matrix 
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The best estimate of the average dislocation density by available data of 

diffraction measurements is found at the minimum of the functional. 
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 .G L   (7.9) 
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As an assumption, there is taken the objective function of the maximum 
likelihood method of L( ) for sample with the nonuniform Gaussian distribu-
tion [105]. 

Approximation of the systematic biases uk is carried out using the vector 
{ }k  of the sample mean deviations k,r (r = 1, 2,  , m) from the predict-

ed harmonics Âk = fk( ) (kmin  k  kmax). 
The penalty function Z( ) restricts the search for the optimum point * in 

the allowable region of the parameter space. Vector s( ) sets the upper and 
lower bounds of   , following a priori intervals for the parameters of 
the dislocations system. 

Coefficient  in Z( ) reduces rapidly with approach to a minimum G( ). 
Suitable initial value it is   10 3 L( 0), where 0 is an allowable starting 
point. The minimizing sequence of points  is calculated by the Marquardt-
Gauss-Newton method [2]. 

At the minimum point * it is required to calculate the criterion for 
checking the agreement of the diffraction observations model with data: 
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When uk is approximated by Legendre polynomials of degree l  lmax, the 
total number of fitting parameters in the M equations of the model (7.8) is  

 = 3 + (lmax + 1). It is taken into account in the correction for bias of the re-
sidual sum of squares. 

The solution of * is always rejected as not corresponding to the observa-
tions data with probability P, if 1M P  [2]. 

For a lower sensitivity of the estimates of * to the choice of the confi-
dence probability P in practice it is realized the principle of stable minimiza-
tion of functionals [95]. 

Successful optimization, proceeding from random points uniformly dis-
tributed in the allowable region of the parameter space of the object, will give 
a numerous of independent measurements of the average dislocation density 
in martensite crystals. 

3. Test of the method for measuring the dislocation density in the 
martensite transformation structure. Reliability of the deriving infor-
mation was verified when measuring the density of dislocations in a single-
phase martensite of 01Kh5 steel with a lattice of crystals practically indistin-
guishable from cubic. 

The results of two different methods for identifying the dislocation struc-
ture from the same vector of the most reliable harmonics of the physical pro-
file of the diffraction line {110} (kmax = 15) are compared in Table 7.7. 

 
Table 7.7. 

Dislocation density in martensite with cubic crystal lattice  
when different method of estimation of the model  

Value to be estimated by the 
model of dislocation structure 

Approximate 90% 
confidence intervals 

of estimates 

Maximum-likelihood 
estimates 

The density of dislocations 
with the limitation of “over” 

parameters 
[0.7; 0.8] 1011 cm 2 (0.6 1.0) 1011 cm 2 

The vector of parameters of the 
system of dislocations loops  [0.4; 0.7] 1011 cm 2  (0.6 1.0) 1011 cm 2 

 
Maximum of the sampling distribution of the dislocation density meas-

urements corresponds to the maximum-likelihood estimate (sample size of 
9 10³). 
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For homogeneous martensite with cubic symmetry of crystals the esti-
mates of the density of dislocations by different methods differ only in accu-
racy, which seeks to prove the reliability of the results obtained. 

4. The degree of order in the dislocation structure of tetragonal mar-
tensite crystals. Under § 7.3 there is described the method applicable for 
identifying long-range order in the dislocation structure of the martensitic 
transformation by the initial harmonics of the diffraction line with large indi-
ces {HKL}. 

When tetragonal lattice of crystals, it is required to transform the inde-
pendent variables of the diffraction observations model in the form of  
Eq. (7.5): 
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Here, to crystal-geometric coefficients, the numerical values of which are 

given in § 6.3, corrections were introduced depending on the lattice 

tetragonality degree 
c
a

: 

111  {110} bcc:  1 1.26 ,C t  2 5.20 ;C t  

111  {112} bcc:  1 2.12 ,C t  2 5.20 .C t  

Estimated interval by    1c
a

t  is the same as for the correction C0, 

given above (§ 7.4). 
Providing for the tetragonality, the dislocation density to be measured of 

 1
d 2

2 a
ca

e , where 1 is the component of the of parameters vector  
in the observations model Eq. (7.5). 

Practical analysis of the dislocation structure of tetragonal martensite by 
two methods for diffraction multiplets {110} and {112} is presented on the 
example of a carbon steel sample in § 10.1. 
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CHAPTER 8 
INHOMOGENEOUS DENSITY OF DISLOCATIONS  
IN A POLYCRYSTALLINE SYSTEM 

Dispersion of orientations of the deforming crystals generates a 
microinhomogeneous dislocation structure. Occurrence of the orientational 
order (thence crystallographic texture) is accompanied by converting of in-
homogeneity into a macroscopic one. 

In the model of a complex dislocation structure of a polycrystalline sys-
tem, the measuring parameters are fluctuations in the density of dislocations 
over crystals and structural components. Parameters describing the sizes and 
arrangement of the dislocation loops within crystals are only limited in the 
region of allowable values [74 75]. 

§ 8.1. Diffraction Imaging Structures  
of Plastic Deformation of Polycrystals 

There are revealed the effects of inhomogeneous dislocation density in a 
polycrystalline system with the crystal orientation ordering inherent in a 
plane strained state. 

1. Diffraction on polycrystals with a rhombic texture. Distribution of 
scattering intensity by a deformed crystal, when the effect of its sizes is neg-
ligible, is determined using Fourier image I(R) (6.3): 

 
 

2 ( ) .T iJ NF e eR qR
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q

 
Here, q  is a deviation from given diffraction vector of an ideal crystal 

HKLq . 
If the system of Cartesian coordinates (X, Y, Z) is chosen so that the Z axis 

coincides with the normal to the reflecting plane {HKL}, then 

   0, 0, 2 ,HKL HKLdq  
2 2 2

HKLd a H K L , 
and a is period of the crystal lattice. 
The intensity of scattering in the HKLq  direction by a crystal rotating 

around the Z axis can be found by integrating ( )J q  over the cross sections 
of the reciprocal lattice site perpendicular to HKLq  within the unit cell of the 
reciprocal space. For the volume unit of the reciprocal space it is obtained the 
intensity 
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Since  / dz  qz   / dz, setting qz = z / dz, where   z  , we arrive 
at the Fourier representation of the distribution of the scattering intensity 
along the Z axis: 

 
 

12 2 .T im
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In the diffraction space of a polycrystal, the intensities Jj(z) (j = 1,  , r) 
from the scattering in the direction HKLq  of a random number r of crystals 
with unequal distortions are summed. A random sum of intensities, averaged 
over all possible aggregates of scattering crystals, will show the diffraction 
line of a polycrystal: 
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.

r

D j
j

J z J z
 

Profile of the line JD(z) is determined by the shape function of the recip-
rocal lattice site 

 1
,j

r
T m

j
G e

 
which depends on the distortions of each crystal in a scattering aggregate. 
Let us represent the number of defects in an ensemble of deformed crys-

tals by a multidimensional random variable   { j} (j = 1, 2, ). A set of 
{ j} is the realization of random increments of the number of defects in de-
forming crystals randomly oriented in the initial state of an ensemble. With a 
small error, we can assume that the random variables { j} are mutually in-
dependent. Then the multidimensional probability distribution of the vector 

 is approximately the product of the Poisson distributions of its independent 
components { j}. 

Function j jT m We e  represents smearing a lattice site in the recip-

rocal space when there are j jNc  dislocation loops in the j-th crystal. 
Coefficient W is the measure of crystal distortion by dislocation loops with 
random sizes and correlated coordinates. Fluctuations of W on crystals will 
be neglected. 

Let us consider a polycrystalline system consisting of s subsystems (tex-
ture components). We suppose first that for all crystals of one subsystem  
(  = 1,  , s) independent random variables j have the same Poisson distri-
bution with the mathematical expectation . If 1W , the mathematical 
expectation of the random function jWe  in the subsystem  is following 

 
.jW We e
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So, to describe a form of diffraction line of a polycrystal of JD(z) it is re-
quired to calculate the expected value of the sum of a random number of in-
dependent random variables jWe  (j = 1,  , r) identically distributed in a 
random subset r  < r with mathematical expectation We  (  = 1,  , s). 

Let the vectors of the cubic lattice pqr  in the -th component of the 
rhombic texture of a polycrystal be ordered in the direction of the normal to 
the plane of a specimen that coinciding with the Z axis. Random deviations of 
the vectors pqr  from the most probable direction can theoretically be dis-
tributed according to the normal law: 

 
cos~ ,pqrf e

 
where  > 0 is distribution parameter, and  is deviation angle; the aver-

aging is carried out over all the vectors pqr  appearing under symmetry 
transformations of cubic crystals [71]. 

For some vector of type HKL  rotated relative to the vectors pqr  by an 
angle , the probability density of orientations will be 
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and the probability of being within 1  from the Z axis it is 
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The probability that any of the vectors HKL  is oriented close to Z is the 
sum of the probabilities . 

Therefore, with the texture of type {pqr} the scattering probability in the 
HKLq  direction is calculated by the formula 
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For a mixed distribution of the orientations of crystals, which is inherent 
in a multi-component texture, the scattering probability will be equal to 

 1
.

s

 
Here,  are the weight fractions of texture components whose number is 

s 1
1s

. 

In the absence of texture, when   0 1, , s , it is obtained 

2 HKLp , where { }HKLp  is the factor of repeated planes of the {HKL} 

type. 
Into a random sample among the general population out of the -th tex-

ture component can occur a random number of scattering crystals, which is 
calculated as the sum of mutually independent Bernoulli random variables 
[37]: 
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M is an independent random variable with a Poisson distribution. 
Using the generating functions of distributions, we find according to [37] 

that r  has a complex Poisson distribution with mathematical expectation  
r  = M   (and the same variance 2

r ), where M  is the average number 
of crystals falling in the specimen volume illuminated by a beam of rays. 

All the expected number of scattering crystals is 
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.

s
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Note, by the way, that the fluctuations in the scattering capacity for a mul-

ticomponent texture increase and do not disappear for arbitrarily large M : 
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Here, it is used the formula of variance for a mixed distribution [31]. 
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Now it can be found the mathematical expectation of a random sum in the 
function G, which describes the shape of the scattering intensity maxima in 
the reciprocal space of a polycrystal. And the equation of diffraction line 
takes the form 
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The entire intensity of scattering by a polycrystal per unit volume of the 

reciprocal space is 
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Moving to the normalized intensities D DJ z J , we make out that the 
diffraction line of a polycrystal in the interval, which is a fraction of æ from 
the period of the reciprocal lattice 2 HKLd , has a representation in the form 
of a Fourier series with harmonics of order  æk m : 
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  (8.1) 

Thus, a multicomponent crystallographic texture gives rise to a diffraction 
multiplet with a different shape of lines entering it, represented by the har-
monics kA , and with weight  (  = 1,  , s) varying depending on the 
type of reflection {HKL} (and that is predictable for physical reasons). 

According to the condition for the resolvability of the diffraction multiplet 
under the variances of the harmonics 2  caused by the Poisson fluctuations 
of the number of defects in crystals: 

 
2 2 2 ,k kA A   

22  kA W , 

there is in principle indistinguishable difference of the average dislocation 
densities 

 d d d ,
 d 2 V
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For example, when the average radius of loops ~ 500 a , the average 

crystal size  
1

3~ V  10 m, it is indistinguishable 7
d 10  cm ². 

Relative shifts of lines  ,  in the multiplet, which are revealed when 
finite dimensions of crystals expanding from the dislocations, are of evalua-
tion 2

, d æ2z b  [63, 94]. For æ ~ 0.1  the shifts are negligible 

when 11
d 10  cm ². 

Under the assumptions made about character of the distribution of ran-
dom variables j (j = 1, 2, ) the expected total number of defects in all 
scattering crystals is 
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The average number of defects that falls at one scattering crystal, the ex-
pected number of which is M , will be 

 1
.

s

 
If assign to all crystals of a scattering aggregate the same distribution of 

the number of defects with average of a mixed Poisson , then there is 
received the equation of the harmonics of the diffraction line in the approxi-
mation of homogeneous structure of a polycrystal: 

 .W
kA e  

Equation (8.1) gets exactly the same form when k  0. This means that 
the initial harmonics will reveal the averaged structure. 

For dislocation structure of plastic deformation applicable the following 
approximate expression 
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  (8.2) 

Since C1 < 10 and b a , the condition 1W m  is valid for all 
allowable m when  0.1  (§ 6.3). 

Figure 8.1 gives a represent of the changing diffraction pattern when a 
macroscopic inhomogeneity of the dislocation density in a polycrystal. 
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. 

Fig. 8.1. The form of diffraction intensity distribution when macroscopic 
fluctuations of the dislocation density in scattering crystals:  
(a) 2 = 0.1; (b) 2 = 0.5. Dashed profile for a homogeneous  

aggregate of crystals with the same as number of defects 
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As an example is taken the diffraction line {112} bcc in the interval  
æ = 0.1 from the period of the reciprocal lattice. In numerical analysis was 
used the exact theoretical expression for e T (§ 6.2). 

There are calculated 1 2
1 2k k kÂ Â Âd d

, and kÂ d
, 

where 1 2
1 2   d d d

 for given 2 21 29 11,10 10  
d d

cm  cm  

and varying ratios of the weight fractions of 2 1  in an aggregate of scat-
tering crystals. The remaining structural parameters are accepted on average 
as in model crystals with large dislocation loops (§ 7.1). 

By uniform distribution of the total number of defects in scattering crys-
tals as compared to the mixed distribution, the diffraction line is weakened 
when 10 210  d cm , at a larger value of 10 11 210 10  d cm  is broad-
ened, accepting a Gaussian form, and if 11 210  d cm , that it is smeared, 
leaving fluctuation of diffuse scattering. 

Structural inhomogeneity of a polycrystalline system affects the distribu-
tion of the scattering intensity near the diffraction maximum, manifesting 
itself in the slow weakening of the harmonics that represent its shape. 

2. The role of fluctuations in the density of dislocations over random-
ly oriented crystals. Fluctuations in the dislocation density caused by disper-
sion of the crystals orientations can in general be comparable with purely 
random fluctuations in a polycrystal. Under this assumption, the number of 
defects in crystals of each of the structural components of a polycrystalline 
system is modeled by independent random variables with the same Poisson 
distribution. To reveal the actual effect of a dispersion of the crystals orienta-
tions, it is required to consider the joint distribution of a random number of 
defects simultaneously in all crystals of each of the subsystems. 

In the approximate representation, the multidimensional probability dis-
tribution of a random number of defects  in an ensemble of deformed crys-
tals will be a product of independent Poisson distributions with random pa-
rameters. 

If nj is a parameter of the Poisson function for the j-th crystal, then the 
mean and variance of a random number of defects therein can be written as 

 

2
, .j j j j jn n   

 
In the model of homogeneous structure all nj (j = 1, 2, ) are the 

same. In reality, due to the dispersion of crystals orientations, the parame-
ters nj themselves are subject to random fluctuations: 

 ,j jn n v  
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where n  is the average value of nj over the ensemble of crystals, vj are 
random deviations from n , supposedly independent of each other and 
having the same probability distribution with mathematical expectation 

0jv  and variance q2. 
The expected mean number of defects fallen at one crystal and the ex-

pected mean square fluctuation of the number of defects over crystals are 
obtained in form [105]: 

  

2 2, .jn n q   
 

From this it is clear that q2 is the increment in the mean square of the 
fluctuations above the mean Poisson variance equal to n . 

Fourier representation of the diffraction intensity distribution is related to 
the function G of shape of the reciprocal lattice site. The joint probability 
distribution of the involved therein quantities jWe  (j = 1, 2,  , r), where r 
is the volume of the scattering aggregate of crystals, is completely deter-
mined by the distribution law of the vector . Under assumption that all of its 
random components { }j  have independent distributions, the functions 

jWe  are mutually independent. 
Mathematical expectation of the sum of r random functions jWe  when 

r is an independent random variable with a Poisson distribution law is calcu-
lated using the generating function of a complex Poisson distribution [25]. 

Taking as the probability distribution of the vector  a product of the 
Poisson distributions of the components { }j , when 1W  we find 

 1
.j

r W vW

j
e r e v dv

   

   

 
Here, r  is the expected (average) number of scattering crystals; (v) is 

the probability density of random fluctuations of the parameters in the func-
tion of the multidimensional Poisson distribution of the vector . 

In all crystals of the ensemble under consideration, the number of defects 
is large. Great deviations from the general mean  are unlikely, conse-
quently (v) decreases rapidly with v . For a sufficiently large ensemble of 
crystals as an approximation to (v) one can take the density of the normal 
(Gaussian) distribution: 

 

2
221 .

2

v
qv e

q
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As a result, the equation of normalized harmonics of the diffraction line, 
with allowance for microinhomogeneity of a polycrystal, will be following: 

 
2 2 2.W W q

kA e     (8.3) 

Parameters of Eq. (8.3) are related to the ensemble average of the disloca-
tion density 

d
 and the additional mean-square fluctuations 2

d
 caused 

by the inhomogeneity Poisson distribution of defects in ensemble: 

 
2 .q d d  

Relative standard deviations, that is, the coefficients of variation denoted 
below by , are a measure of the dispersion of dislocation densities by ran-
domly oriented crystals. 

Figure 8.2 shows the effect of the dislocation density distribution in a 
polycrystal on harmonics of the diffraction line, taken in earlier as example. 

 

Fig. 8.2. Curves of logarithms of the calculated harmonics of the diffraction 
line depending on structural state of a polycrystal: (1) microinhomogeneity; 

(2) macroscopic inhomogeneity. Dashed line for uniform distribution  
of defects 
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For comparison there is taken a faintly inhomogeneous mixed aggregate 
of crystals 1 29 10

d d 210 cm ²,  10 cm ²;  0.1  and a micro-
inhomogeneous with the same total number of the defects 

9
d 2.3 10 cm ²,   = 0.25 . 
With the same average dislocation density fallen at one crystal, the differ-

ence between logarithms of harmonics in the model of a mixed structure by 
Eq. (8.1) and in the model of a microinhomogeneous structure by Eq. (8.3) 
grows approximately in proportion to k. 

Reduction of the decrease rate of harmonics with an increase in their or-
der in the presence of a macroscopic fluctuation of the dislocation density in 
a polycrystal proves to be essential. 

§ 8.2. Measuring of the Dislocation Density in an 
Inhomogeneously Deformed Polycrystal 

The average and dispersion of dislocation density in each structural com-
ponent of a polycrystalline system are under determination. At variety of in-
formation about the object a multivariant estimation of the parameters per-
forms. 

1. Model of diffraction observations for a mixed dislocation structure 
of a polycrystal. With a nonuniform dislocations distribution both within 
crystals and over crystals and structural components there is a theoretical 
model of diffraction observations on Eq. (8.1) – (8.3). 

The model equation as applicable for measuring of parameters takes the 
following form: 

 

 

0 1 0 2
   

1

22

1

1
2

, ,

, exp , ,

, exp ,    

æ . 

k k k

s

k k

k k k

k HKL

A f x u

f x x

x x e x e

x C Q k

  (8.4) 

Here, xk is the independent variable for reflection {HKL}; uk is an auxilia-
ry variable that compensates for systematic errors as in the model and obser-
vations data. 

The parameters vector   

t
s  has components  

that contain the parameters  of the dislocation structure of the -th subsys-
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tem of crystals. The weight fraction of the -th component in the scattering 
crystals is represented by the parameter  = ln . 

In the model of a one-component polycrystalline system will be the vector 
  . 

The measuring parameters of the dislocations density distribution are con-
tained in the components ( 1, 2) of each vector  (  = 1,  , s): 

 
2 2

1 d 2 d
1
2

ln ,   ln ,   ln 2 .a
 

Component 0 in all vectors  is the same. An “over” parameters of the 
dislocation structure are involved in it from W by Eq. (8.2), averaged over the 
subsystems: 

 
 

2 2

0 ln 1  1 2 ,a p b
 

which are only limited in the range of allowable values when optimizing 
the model Eq. (8.4). 

Given form of function f(xk, ) is adapted to the use of a priori infor-
mation on the fractions of the structural components in an aggregate of the 
scattering crystals. Herein the parameters  are subject to equality type con-
straints ˆ 0 . If such information is not available, f(xk, ) will con-
tain the searched fractions of e  with imposed inequalities 0 1. 

In common there is the connection equation 
1

1s
. 

2. Estimation of parameters under conditions of systematic devia-
tions of the observations data. Let us assume that the data of diffraction 
observations constitute a sample {Ar} (r = 1,  , n) of independent and iden-
tically distributed random variables of dimension K with a covariance matrix 

 

2
1

2

0
,

0 K

AV

 
where K  kmax is the highest order of well-defined harmonics in the infi-

nite-dimensional vector A = {Ak}. It can be assumed that disturbances of the 
normal distribution law on sample are small. 

Existing systematic deviations of the observations vector A from the 
model equations are most successfully approximated by trigonometric poly-
nomials. Due to the orthogonality of the basis functions, there is no correla-
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tion between the error of approximation of the auxiliary variable {uk} and the 
error of estimation of  by the maximum likelihood method [105]. 

Let k  be the sample mean of the deviations from the model 

 
   , , ,  1, , .k r k r kA f x r n

 

Since the expected values of k ku  are zero, an acceptable approxima-

tion of ku  is obtained when 
2

1
min,K

k kk
u  

 
1 1

1 1 2 cos cos ,
qK

k k k k
k t

K
u t t  ,k

k
K

 

q is order of trigonometric polynomial. 
A valid estimate of parameters vector , which maximizes the likelihood 

of sample {Ar} with an inhomogeneous Gaussian distribution, is the station-
ary point  of the objective function 

   
2 2

,
1 1

1
2

.
K n

k r k k
k r

L u   (8.5) 

The smallest order q of the polynomial for approximating {uk} is chosen, 
in which agreement of the model with the observations data is not rejected by 
statistical checks. 

Criterion to checking the adequacy of the model by residual deviations of 
* *

, ,k r k r : 

 
12* * 2

,
1 1

1 3 1 ,    1
K n

k r k k
k r

n
s qu

nK  

by a normal distribution of measurement errors has an ²-distribution with 
K degrees of freedom. There is taken into account the correction  for bias of 
the variance estimate over residuals depending on the number of adjustable 
parameters in K equations of the model (8.4). 

In practice, a good approximation to the systematic distortions {ûk} turned 
out to be a polynomial of order q = 1 for a one-component system (s = 1) and 
q = 2 for a two-component system (s = 2). 
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Parameters  (  = 1,  , s) must reside to the region of allowable values 
of  , , according to available information on the dislocation structure of 
plastic deformation (§ 7.2). 

To restrict the search for a stationary point  in the allowable region of 
the parameter space of the object, the penalty function is introduced: 

   

2

0
ln ln 1 ,

s

l l
l

w w   (8.6) 

where w is the vector of normalized parameters changing within the in-
terval (0, 1): 

 

   

 

   

2 1

0 0 0 0

1 1 1 1

2

  1, ,

    

    0 ,

  ,

                 1 , , 2 .

lw l s

e l s s s

l

 
Positive coefficient  rapidly decreases during optimization. Its initial 

value is taken to be 0  10 3 L( 0), where 0 is the allowable starting 
point [2]. 

From the quantitative analysis of the texture, it is possible to obtain ap-
proximate limitations for the component  of parameters vector : 
g , where ln  is calculated from the measured values of 

 (  = 1,  , s  1). About the covariance matrix of the restrictions vector 
{g } it is known only that it is proportional to the unit matrix: 2 2~ , so 

means 2 ~ 1, and hence 2 ~ 1g . 
When assuming that the distribution of errors g  is not very different from 

the normal one, to the logarithm of the likelihood function in the form of Eq. 
(8.5) it is added the following quantity [2]: 

   

1
2

1

1
2

ln .
s

s g   (8.7) 

In the absence of measurements data of  the restrictions on the weight 
fractions of  will be controlled by the additional term of the penalty func-
tion by Eq. (8.6): 

   

1

1
ln ln 1 .

s

  (8.8) 
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Constructed optimization functional with constant members (8.5), (8.6) 
and additional (8.7) or (8.8) for a mixed structure, is effectively minimized by 
the Marquardt-Gauss-Newton method. In the course of computational exper-
iments with a random selection of starting points from an allowable region, a 
sample of the measured values of the parameters vector  is extracted suffi-
cient to construct self-correcting confidence intervals for the initial structural 
parameters (§ 7.1). 

3. Tests of the method for measuring the inhomogeneous dislocation 
density on model polycrystals. In the model of two-component structure of 
a polycrystal, on which the tests are carried out, there is assigned a mixed 
dislocation density distribution in different fractions ( 1, 2) with parameters 

 

1 9
1d 10 cm ²,  0.15 ;  

2 11
2d 10 cm ²,  0.05 . 

Measurements of the harmonics of the diffraction line {112} bcc (Fe) were 
modeled by normally distributed random variables with calculated mathemati-
cal expectation Âk (æ = 0.1) and one the same standard deviations  = 0.01. The 
dimension of the observations vector K is limited by the requirement for har-
monics Âk to be significant with a confidence probability P = 0.99. 

Simulation measurements data and deviation of the approximate function 
f(xk, ) from the exact mathematical expression used in the data generator are 
shown in Fig. 8.3. 

Estimates obtained by different methods for the parameters of the disloca-
tion density distribution in mixed aggregates of crystals are presented  
in Table. 8.1. 

Approximate confidence intervals are constructed from independent ran-
dom samples with the size of 60 measured values of the vector . Average 
intervals are given over repeated 60 samples. 

Table 8.1. 
Parameters of dislocation density distribution  

in the model of two-component polycrystalline system 
The 

weight 
fractions 

taken 

Approximate 90% confidence intervals of estimates* 

Mean, 2
d [cm ]  Variation coefficient,  

9
d 1

ˆ 10   11
d 2

ˆ 10    

 [1.0; 1.2] 109 [0.6; 0.9] 1011 [0.14; 0.18] [0.010; 0.013] 
 [0.9; 1.2] 109 [0.6; 0.8] 1011 

 [0.9; 1.2] 109 [0.8; 1.1] 1011 [0.16; 0.20] [0.011; 0.014] 
 [0.8; 1.0] 109 [0.6; 0.8] 1011 

* The first row under the restriction of estimate of the weight fraction 2 in the in-
terval (0, 1); the second row when minimizing of discrepancy 1 2ˆ  in approxima-
tion of homogeneous components. 

 1
ˆ 0.15

2
ˆ 0.05

2ˆ 0.1

2ˆ 0.5
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Fig. 8.3. Data of simulation measurements for an inhomogeneous aggregate 
of crystals: (a) 2 = 0.1; (b) 2 = 0.5. Solid curves present the exact  

diffraction equation, and dashed curves the approximation by model 
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Estimates of the means 
1 2

d d,   of mixed distribution of dislocation 

density are lightly biased to weighted average densities 
d

. Neglecting the 

fluctuations  1 2,  lowers the estimates of average densities, and for large 

d
 the difference in estimates is more significant. Confidence intervals for 

the fluctuations  1 2, , despite their arising bias, are close to the given 
values. 

In principle, the method correctly distinguishes the dislocation densities 
even in weakly inhomogeneous aggregate of crystals. 

§ 8.3. Parameters of Dislocation Density Distribution  
in Examples of Structures of Low-Carbon Steel 

A macroscopic inhomogeneity of dislocation density on the compo-
nents of crystallographic texture of low-carbon steel is reliably revealed. 
Fluctuations of dislocation density over randomly oriented crystals natu-
rally weaken with an increase of the orientational order. 

1. Density of dislocations into deformation texture. Probability dis-
tribution of the orientations of crystals in specimen of cold-worked low-
carbon steel is determined from measured spherical harmonics (§ 2.3). 
Sampling distribution of orientations of a random aggregate of crystals is 
shown in Fig. 4.1. Texture parameters that are used in estimating the den-
sity of dislocations are given in Table 8.2. 

Table 8.2. 
Parameters of ordering of crystallographic planes  

in thin-sheet low-carbon steel 
 {pqr}    

1  {112}  0.753  0.004  20.3  0.6 
2  {111}  0.247  0.004  42.3  1.3 

 
Table 8.3 shows the probabilities  of the falling the crystals into the 

reflecting position when parameters of the orientation ordering are ,  
as well as fractions of texture components in the diffraction doublet  
of  when their weight in a mixed distribution of crystals orientations is 

 (  = 1, 2). An angle of misorientations of the reflecting planes accept-
ed for calculation is  = 0.1. 

On the set of reflections {HKL} the texture components are best rep-
resented in the {222} reflection, but as the  value shows, the largest 
number of crystals can share in the reflection {112}. 



163 

Table 8.3. 
Probability of reflection on orderly oriented crystals  

in specimen of thin-sheet low-carbon steel 
Calculated 

quantity 
 

Reflection indices {HKL} 
{222} {112} {200} {110} 

{112} 0.0318 0.1086 0.0024 0.0134 
{111} 0.2115 0.0565 0.0000 0.0003 

1 2,  0.0767 0.0956 0.0018 0.0101 
{112} 0.3108 0.8523 1.0000 0.9933 
 {111} 0.6892 0.1477 0.0000 0.0067 

 
Under conditions of existing texture, the predicted variance of harmonics 

of the diffraction line 

 

2 2

1
1~

k

s

A
 

for {222} is an order of magnitude larger in comparison with {112}. 
With actual structural state of the specimen, the diffraction line {112} by 
reason of informative is more preferable for determining the density of 
dislocations. 

X-ray measuring the test specimens from low-carbon steel has been 
performed by D.A. Kozlov. 

The diffraction line {112} was measured in Co–K  radiation in the inter-
val 2 {112} = 10  with the step of 0.1  that satisfies the requirement of un-
correlated counts of pulses. X-raying was carried out in two passes with a 
counting time of 5 s per point at 72% strain of the specimen and 20 s at 18% 
strain, and then repeated with a new installation of the same as specimen. 
Reference line was measured on quite well annealed specimen. X-ray meas-
uring conditions to obtain the most accurate information from the diffraction 
line are considered in § 9.1. 

Optimal estimates of harmonics of the physical profile of measured 
diffraction lines are shown in Fig. 8.4. Method for determining the physi-
cal profile is described in § 9.2. 

The presence of more than two structural components in a deformed 
polycrystal is possible, but it is practically impossible to reveal them 
when a limited amount of reliable information in the experimental data. A 
model of one-component or two-component structure of a polycrystal is 
chosen by the method of successive regression analysis of the diffraction 
observations Yk =  ln Ak. 
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Fig. 8.4. Measured harmonics of the physical profile  
of the diffraction line of low-carbon steel samples  

with different extent of deformation: (a) 18%; (b) 72% 
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Table 8.4. 
Estimates of the dislocations system parameters  

by a homogeneous polycrystal model for thin-sheet low-carbon steel 
Approximate 90% confidence intervals of estimates 

Dislocations density 

d  
Average radius 
of loops a  

Variation 
coefficient  

Correlation 
radius b  

[2.1; 2.6] 109 cm ² [460; 555] [0.20; 0.24] [1.5; 1.8] 
[2.5; 3.2] 109* cm ² 

* With the restriction of other parameters in allowable region. 
 

Table 8.5. 
Average dislocation density in the components  

of the crystallographic texture of the low-carbon steel specimen 
Approximate 90% confidence intervals 

{112} 110  {111} 110  
 [2.0; 2.4] 109 (1.6  2.5) 109 cm ²  [2.2; 2.7] 1011 (2.5  4.0) 1011 cm ² 

 [1.9; 2.4] 109* cm ²  [2.2; 2.8] 1011* cm ² 
* Without using information on the distribution of the orientations of crystals.  
(In parentheses these are most plausible estimates by the histogram maxima.) 
 
Macroscopic inhomogeneity of a polycrystal is detected due to the fact 

that in the regression equations belonging to different models of the structure, 
the difference of output quantities follows  k (Fig. 8.2). The basis for regres-
sion is constructed taking into account the available systematic deviations of 
the observations data caused by the asymmetry of the measured diffraction 
line 1 (§ 7.1). 

Table 8.4 and 8.5 present the estimates of parameters of considered mod-
els of the object. On the results of computational experiments there is deter-
mined the average of confidence intervals for 900 random samples with the 
size of 60 extracted from total sample of 9·10³. 

Wald's sequential criterion of likelihood ratio [2] shows the superiority of 
the model of a mixed dislocation structure of the specimen in comparison 
with the model of a homogeneous structure under an increase the highest 
order of the measured harmonics to k  23. Probability to accept mistakenly 
both one and another model, when in fact the alternative is true, is by  
P < 0.01. 

In the model of a homogeneous polycrystal, a “smoothed” structure is re-
vealed with a dislocation density close to main in the specimen. 

                                                      
1 Flattened shape of crystals in the plane-strained specimen creates an asymmetry 
along with the splitting of the doublet 

1 2
–K K  (§ 6.2). 
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Fig. 8.5. Sampling distribution of the dislocation density measurements 

 in the texture components of cold-worked low-carbon steel:  
(1) {112} 110 ; (2) {111} 110  

As experience proves, estimates of the average density of dislocations in 
the structural components of a polycrystalline system are stable to a priori 
information on the weight fractions of the components in a scattering aggre-
gate of crystals. 

Sampling distribution of the measured values of a mixed dislocation den-
sity is represented by histograms combined in Fig. 8.5. The most plausible 
estimates of the densities from the histograms maxima are given in Table 8.5. 

Reproducible components of the diffraction intensity distribution inherent 
in the crystallographic texture of the specimen are completely different by 
shapes, as it shown in Fig. 8.6. 

On the basis of the results obtained, it can be concluded that in the texture 
component of cold-worked low-carbon steel with a high degree of ordering 
of {111} 110  orientations, the dislocation density is two orders of magnitude 
higher than in the predominate component with the most probable orientation 
{112} 110 . 

In a subsystem with a dislocation density above 1011
 cm ², the disordering 

of the crystal lattice is so great that only a bell-shaped increase in the intensity 
of diffuse scattering remains on the place of the diffraction line, in full ac-
cordance with the theory of M.A. Krivoglaz. 
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Fig. 8.6. Diffraction mapping the texture components  
of thin-sheet low-carbon steel:  
(a) {112} 110 ; (b) {111} 110  
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2. Microinhomogeneity of the dislocation density produced by the 
dispersion of orientations of crystals. Microinhomogeneous dislocation 
density was measured on a weakly deformed (18%) and strongly de-
formed (72%) specimens of low-carbon steel. The model of diffraction 
observations was chosen according to the structural states of the speci-
mens, identified by successive regression analysis of the data: it is one-
component for weakly deformed specimen and two-component for 
strongly deformed one. 

Table 8.6 represents the estimates of the dislocation density distribution 
parameters in the structures of cold-worked low-carbon steel. Confidence 
intervals for mean densities of d  and relative standard deviations of , so 
called variation coefficients, on average are turned out of 900 random sam-
ples of size 60, extracted from the total sample 9 10³ of the measurement 
results. Sampling distribution of the measured values of the parameters is 
shown in Fig. 8.7. 

Table 8.6. 
Parameters of dislocation density distribution in structures  

of low-carbon steel with different degrees of ordering of crystal orientations 
Measuring value Approximate 90% confidence intervals 

Short range 
order 

Long range order 
weak strong 

Average density, 
2

d  c ]m[  [1.5; 1.8] 109 [2.5; 3.0] 109 [3.0; 3.6] 1011 

Variation 
coefficient,  [0.19; 0.24] [0.06; 0.07] [0.005; 0.006] 

Criterion for 
fluctuation 

significance,  
423 64.7 47.7 

 
If the fluctuations in the dislocation density over the crystal orienta-

tions do not exceed its random fluctuations in crystals with one and the 
same orientation, then the following limitation will be satisfied with 
probability P = 1  : 

 d

2 2
d ,ru

 

where 
d

2  is the mean Poisson variance of dislocation density in a 
polycrystal; ur( ) is percentage points of the gamma-distribution for sample 
of size r. 
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Fig. 8.7. Sampling distribution of the measurements of the mean and variations  
of dislocation densities (  

2
d [cm ] , ) in crystals with the ordered orientations:  

(a) short-range order; (b) low degree of long-range order of {112} 110  type;  
(c) high degree of long-range order of the {111} 110  type 
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Let us take the variance 
d

2
d 2 V  for the greatest in the range 

of allowable values of the average radius of dislocations loops   1000 a 

and the smallest observed crystal size 1
3V  10 m. The values of  for the 

largest of all possible 
d

2  are entered in Table 8.6. 
From a comparison of the lowest evaluations of  with the critical value 

of the criterion at  = 0.0002 [105]: 

 

0.425,  100;
3.56,   10;
8.21,   2

r

r
u r

r  
it is clear that even for two scattering crystals the detected fluctuations are 

unlikely if the structure is homogeneous. 
Microinhomogeneity of dislocation density proved to be significant even 

with strong ordering of the orientations of crystals. When neglecting by fluc-
tuation over randomly oriented crystals, the estimates of the mean dislocation 
density in structural components biased to lower values. 

The observed relation between a level of fluctuations in the dislocations 
density and state of order in orientations of crystals is consistent to physical 
conceptions. Consequently, in practice, the method yields realistic parameters 
of the complex dislocation structure of a polycrystalline system. 
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CHAPTER 9 
OPTIMUM MEASUREMENTS OF DIFFRACTION  
ON POLYCRYSTALS FOR STRUCTURAL ANALYSIS 

The recovery with the greatest possible accuracy of the true diffraction in-
tensity distribution inherent in the object under study is the goal of optimal 
organization and processing of diffractometric data [69, 87 88]. 

§ 9.1. Fourier Representation of Measured Diffraction 
Line with Adaptation to a Background Level 

At the adaptive method of search of the coefficients of Fourier series, rep-
resenting the shape of the diffraction line, its background component refers to 
systematic errors in the data. The length of the Fourier series agrees with the 
variance of the measurements. 

1. A self-adjusting model for estimating the harmonics of the diffrac-
tion line. Let us introduce the intensity distribution function (x) for Bragg 
scattering that is merging with the diffuse scattering when it “thickens” to-
ward the reciprocal lattice site [39]. A deterministic drift of diffuse scattering, 
which manifests itself in the growth of its intensity with distance from the 
zero point of the reciprocal space, is denoted by (x). Overall change in the 
scattering intensity within range of the reciprocal lattice period will be de-
scribed by the function 

 .f x x x  
Let Y = (Y1,  , YM) be a vector of diffraction measurements, where Ym = 

Y(xm), and xm are the normalized coordinates of M observation points in the 
interval ( 1  x  1). The problem is to determine the distribution function of 
the scattering intensity (x) from the measurement data Y. 

To define a function (x) means to estimate the coefficients of its Fourier 
representation: 
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The vector of harmonics c carries physical information. Next section of 
this paragraph is devoted to the method of its optimal estimation. 

Interfering drift is conveniently approximated by the orthonormal Legen-
dre polynomials Pl(x) [37]: 
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From the regression model of the measured value: 

      , , 1, ,m mY f x m Mc h   (9.1) 

it is required to exclude a purely fitting vector of coefficients h, to calcu-
late of which the usual least-squares method is suitable. 

Condition 
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with an accuracy to  M 1 there are satisfied the coefficients 
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Here, lj r  are spherical Bessel functions of the first kind, which are 
expressed through trigonometric functions (sin r, cos r) [37]. In particular, 
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Equation (9.1) when eliminating h becomes a self-adjusting model for es-
timating the vector of harmonics c: 
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  (9.2) 

The number of degrees of freedom is decreased on the dimension of the 
vector h, which is one more than the highest degree of the polynomials 
Pl(x). Between random errors c and h there is a correlation of order M 1. 
Such is a growth coefficient for variance of estimates 2

kc  as a “sur-
charge” for setting up. 



173 

Experience suggests that an acceptable representation of drift (x) will be 
given by Pl(x) polynomials no higher than the first degree. Then in Eq. (9.2), 
the output variable Zm and the regression function g(xm, c), where kind of the 
coefficients are  

1
2k k kc a ib , take the form 
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Consequently, adaptive harmonic analysis requires very small changes of 
the basis functions of trigonometric regression. 

2. Vector of harmonics of the diffraction line with the lowest general-
ized variance. In an infinite-dimensional space of Fourier representations, 
the estimate of the vector c is optimal if it bias is limited. Limitation of biases 
is possible in principle when the a priori information on the smoothness of 
the regression function is included and the error of the function is consistent 
with the data errors [95, 49]. 

Method of stable estimation of the Fourier coefficients of a diffraction 
line requiring restrictions on biases consists of the following actions: 

 Iterative search of the minimum necessary length of the Fourier series 
to approximate the data: the higher order of harmonics K is increased 
until reducing of deviations from the regression function come to end. 

 A choice from the set of vectors c for which the dispersion of data rel-
ative to the approximating function is comparable with their errors, of 
vector with the lowest norm 2c . 

For each K a vector c is searched out that corresponds to a minimum of 
the objective function of multidimensional linear regression 
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Here, R is the matrix made up of (2K + 1) basis functions of the trigono-
metric regression by Eq. (9.3) that are calculated at the measurement points 
xm (m = 1,  , M); L is a diagonal matrix with elements of 2

kk kkL k  
(k = 1,  , K) (t-superscript denotes transpose). 
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As an approximation to the covariance matrix of errors in the vector of 
experimental data Z, when 1M , we can take 
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2
m  is variance of primary measurements Ym (m = 1,  , M), which min-

imum value is determined by Poisson fluctuations of intensity. 
A positive parameter  regulates the extent of smoothing of the regres-

sion line according to the dispersion of data. To select the optimal  by a 
minimum of Q(c), it is used a geometric grid of type  0

j
j d , where  

d > 0 (j = 0, 1, ) [95]. 
The measure of the error on the approximation of measurements with the 

total number of adjustable parameters (2K + 3) it is 

 
 

21

1
2 3

, .
M

mm m m
m

M
M K

V g x Zc
 

Criterion of  initially decreases rapidly with increasing K, but in the fol-
lowing it is already stable growing. Hence, the residual deviations became 
comparable to the actual data errors [13]. 

When distribution of errors of Z is close to the normal, the value of  
should not exceed strongly the critical value of the ²-criterion with M de-
grees of freedom. If, however,  > M /(1  P), the approximating equation is 
rejected as inadequate with the reliability not less of P. 

When an acceptable agreement with the data is reached, the vector 

 
 

1* t 1 * t 1c R V R L R V Z
 

is the estimate with the lowest generalized variance measured by determi-
nant of the covariance matrix 

 
 

1t 1 *det ,R V R L
 

and with a minimum possible bias when the existing error of the regres-
sion function [2]. 
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3. Testing the adaptive harmonic analysis of the diffraction line using 
simulation experiments. Simulation of diffraction measurements makes it 
possible to check the accuracy of the harmonics estimates by their deviations 
from true values. 

Let us assume that the distribution of the scattering intensity is described 
by the Lorentz function appearing in the diffraction theory of deformed crys-
tals [39]: 

 
12 2 .1 x x

 
Drift of diffuse scattering (the cause of which in point-like perturbations 

of periodicity that exist even in an ideal crystal due to thermal vibrations of 
atoms), as results from the theory of [39], can obey the following relation-
ship: 

 
211  1 1 .xx e x  

Let us agree to call the function (x) a background. When 1 , as on 
reality, (x) approaches the equation of a straight line with an angular coeffi-
cient of  ( ). 

Parameters (   ) are chosen so that the experimental characteristics: 
the peak width by proportion of the observation interval, the average relative 
level of a background and it's the slope angular rate were comparable to the 
real ones. In Fig. 9.1 it is depicted a profile of the measured function f(x) with 
the parameters  = 6 ,  = 0.30,  = 0.03. 

Measurements data at a given number of points M of the interval ( 1  x 
 1) are modeled by mutually independent Poisson random variables (Y1,  , 

YM), whose distribution is close to the normal one with the mathematical ex-
pectation f(xm) and the variance 2 ~m mf x  (m = 1,  , M). Regulating 
ratio on Poisson dispersion under simulation measuring is consistent with the 
scale of real intensities of diffraction. 

In the accepted practice of primary data processing, the extreme points of 
the observations interval that fit into the overall regression line taken as count 
out level are considered to be background and discarded. Let us call usual 
way the “background cutting-off”. 

In Table 9.1 there are presented estimates of the beginning harmonics ck 
for different methods of analyzing measurements in comparison with the 
exact values of ˆkc  from the integral Fourier transform (x) (   x  ). 
There is given the average of 99% confidence intervals, constructed from the 
results of N = 60 repeated experiments, with the number of measurement 
points M = 121. The measurements variance is 2 0.006m mf x   
(m = 1,  , M). 
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Fig. 9.1. Model function for simulation tests of adaptive harmonic analysis. 
Dashed line depicts the background function of x  

Table 9.1. 
Estimates of the beginning harmonics  

of the model profile from simulation measurements data 
 
k 

 
Exact harmonics k 

Method of analysis of the experiment  
adaptation to background cutting-off a background 

 1  0.8465 [0.8551; 0.8918] 
 2  0.7165 [0.7190; 0.7500] [0.7946; 0.8144] 
 3  0.6065 [0.6097; 0.6376] 
 4  0.5134 [0.5133; 0.5389] [0.5591; 0.5746] 
 5  0.4346 [0.4345; 0.4583] 

 
Figure 9.2 shows how the deviation of the averaged estimates of ck from 

the exact theoretical harmonics  increases at k  0. With the same regular-
ity there are deviated the coefficients of approximation (x) by trigonometric 
polynomial on interval ( 1  x  1), these will be called approximate har-
monics . 
  

ˆkc

kc

(x) 

 x 1.0 1.0

1.16 

0.50 

0.30 

0.15 
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Fig. 9.2. The beginning harmonics of model diffraction profile:  
solid line is exact harmonics (   x  ); dashed line is approximate 

harmonics ( 1  x  1). Points denote the average of estimates from a series  
of simulation experiments: (1) adaptation to background;  

(2) cutting-off a background 

Confidence intervals of self-correcting estimates of ck are biased from the 
exact harmonics of ˆkc  to an approximate high kc . The “background cutting-
off” causes over-estimates of the beginning harmonics already with respect to 

kc  in addition to the large loss of information contained in the diffraction 
measurements. 

With an existing bias, the measure of the loss in accuracy of estimate ck is 
the distance of upper confidence boundary from the true harmonic [105]: 

 1 ˆ ,
kk c P kE P c t c

 

where kc  is the standard deviation, 1 Pt  is the percentage point of the 
t- distribution for the probability P. In Table 9.2 it is given the value of (P) 
for first-order harmonic most loosing in the accuracy of estimate. Probability 
that its error with different original data will not exceed the specified values, 
is P = 0.99. 

–
 –  

k  

ck 
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0      10
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Table 9.2. 
Limit losses in accuracy of estimates of the first order harmonic 

The 
measurements 

variance 

 

The parameters of simulation experiments 
M = 121 

 = 6  
M = 61 

 = 3  
 = 0.00 
 = 0.00  

 = 0.30 
 = 0.03 

 = 0.00 
 = 0.00  

 = 0.30 
 = 0.03 

 0.002  0.029  0.037  0.051  0.056 
 0.006  0.032  0.044  0.053  0.061 
 
To reduce the deviation of ck from the true harmonics ˆkc  it is required the 

greater decrease in the measurements variance when the higher the back-
ground parameters (x). An increase of the highest degree of polynomials 
Pl(x) to the model Eq. (9.2) does not improve the accuracy of estimates ck, 
even with a simultaneous reducing the variance of the measurements by an 
order of magnitude. 

Achievable accuracy of the beginning harmonics of the diffraction line is 
controlled by length of the interval of observations. Quality of the higher 
harmonics depends most on the method of constructing the regression equa-
tion approximating the measurement data. 

In the traditional method of least squares, the length of the Fourier series 
is limited by the number of measuring points, and in the method of steady 
regression analysis, one is consistent with data errors. So that appearing error 
of the regression function varies. 

To check the accuracy of the methods there have been calculated the root-
mean-square deviations of the estimates of ck from the true values of ˆkc  over 
sampling of size N = 125 obtained as a result of simulation experiments on 
the model function f(x) with parameters (  = 6 ,  =  = 0). A criterion for 
the sufficiency of the length of a Fourier series for approximating the meas-
urement data is  < M. 

Figure 9.3 shows the growth curves of the true relative errors in estimates 
of high order harmonics, precisely 

 21 ˆ
ˆk k k
k

r c c
c

, 

when dispersion of measurements 2 0.002m mf x  (m = 1,  , 121). 
In Table 9.3 the greatest relative biases  of sample mean  

for different accuracy of measurements are compared. 
 

2
m mf x

ˆˆk kkc c c kc
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Fig. 9.3. Relative standard deviations of estimates from true harmonics: 
(1) steady estimation; (2) method of least squares.  

Dashed line for deviations from sample mean 

Table 9.3. 
Relative errors of the higher-order harmonics depending  

on variance of simulation measurements 
 

Calculated ratio to the k  
2 0.002 m mf x  

K = 44 

2 0.006 m mf x  
K = 39 

1 2 1 2 
Bias of the mean of estimates   0.17  0.58  0.33  0.41 

Standard deviation of estimates   0.42   0.97   0.48   0.73 
 (1) method of steady estimation; (2) method of least squares. 

  
A consequence of a finite number of measurement points M are positive 

biases of harmonics estimates [106]. With the increase in error of the regres-
sion function due truncate a series length of K, negative biases of high order 
harmonics grow rapidly. In spite of rising bias, the largest true relative error 
rk of the stabilized estimate ck (k = K) has remained at a lower level in the 
tests carried out. 

rk 

k 31 44

0.97 

0.07 
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Simulation experiments verify that in the adaptive method of approxima-
tion of measurements the beginning harmonics of the diffraction line are de-
termined with the best accuracy. Efficiency of the method of steady estima-
tion in comparison to the least squares method for higher-order harmonics 
increases significantly with increasing data accuracy. 

4. Applying of the adaptive method of harmonic analysis to the data 
of a real experiment. Self-correcting on background, harmonics of the dif-
fraction line {ck} are estimated by the normalized primary measurements of 
the scattering intensity 
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max min
0 0
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Y Yy m M
Y Y  

As count-out level of min
0Y , located at the point x = 0, the average for the 

extreme pairs of points of the observation interval is taken, the center of 
which is coincident with the maximum of the diffraction line of max

0Y . 
A background component of the measured intensities is approximated by 

equation 
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By the experimental conditions, the primary observations {Ym} are inde-
pendent asymptotically normally distributed quantities with mathematical 
expectation ˆ ˆ

m mY Y x  and variance 2 ˆ
m mY t . Measuring time t is the 

same for all points of xm. Diagonal covariance errors matrix of the normalized 
variables ym has elements 

22 max min
0 0mm mV Y Y     1, ,m M . 

For a practical example used measurement data of the diffraction line 
{112} of low-carbon steel specimen with deformation of 32%, which were 
obtained by D.A. Kozlov. X-raying procedure is detailed in § 8.3. 

Poisson variance of the measured normalized intensities of ym this is 
Vmm = 0.004 (ym + 0.23). The given measuring points number is M = 101. 

Sampling fluctuations of the Fourier coefficients are shown in 
Fig. 9.4. Profile of the diffraction line, adequate onto original data, which 
was constructed from the results of adaptive harmonic analysis, is pre-
sented in Fig. 9.5. 

Method developed, in practice carries out the Fourier representation of the 
measurements corresponding to their accuracy. Harmonics of the diffraction 
line are determined directly from the primary data. Probability that these con-
tain same amount of information as is obtained in the experiment rises. 
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Fig. 9.4. Practical results of adaptive harmonic analysis  
of the diffraction line of the test specimen: (1) ak; (2) bk 

 

Fig. 9.5. Approximation of real diffraction measurements  
by Fourier coefficients self-correcting as to background 
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5. Requirements to the experiment on the accuracy of measuring the 
harmonics of the diffraction line. Study of inherent errors in the 
diffractometric data can specify the experimental conditions under which 
errors of determining harmonics of the diffraction line at least not become 
unallowable. 

Essential time to measuring the diffraction line: Let the measuring inter-
val be much larger than the width of the diffraction line, and the length of the 
Fourier series approximating the line profile be K  (M  1) / 2 (M is the 
number of measurement points). Approximate covariance matrix of the trig-
onometric regression coefficients will consist of the elements 

1 2 1
0( )kkMV k k . The index  denotes the point number of the 

set {xm} such that 0mx . 
When the number of points 1M , the correction, depending on  

  K 2, is unimportant. Therefore, as a rough estimate of the variance of the 
measured harmonics ck, when counting pulses at one point for a time t, one 
can take 

 

 

max
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2max min
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1 .
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Normalized harmonics 0k kc c c  of high order k, when 1kc , have 

variance 2 2 2
0k kc c c . Here, 0c y  as it follows from averaging over all 

m points of the variables of Eq. (9.3). 
Introducing the limitation 2

kc  for the normalized harmonic of the 
highest order k = K, we obtain the formula for the indicative calculation of 
the total time of measuring the diffraction line that is T = M t: 

 

 

max
0

2min
0

1 .YT
Y Y

 
Measuring time is determined with some margin. When the number of 

harmonics to be estimated is agreed to accuracy of data the controlled vari-
ance will be lower than established in calculation. 

For specimen taken as a practical example, according to the preliminary 
data to measuring one point requires approximately 16 s when specified  
 = 10 4. By scanning in three passes with a total time of pulse count at point 

15 s the variance of the normalized harmonic of largest order K = 39, at 
which achieved an acceptable approximation of primary measurements 
(Fig. 9.4–9.5), has an estimate of 0.16 10 4 whereas mean of the estimates 
0.28 10 4. 
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Formula derived to plan the time of the diffraction line measuring is use-
ful for practice, especially when measuring a standard. 

Allowed step of measuring the diffraction line: By measuring with a step 
 equal to the width of the pulse counter slit, instead of the true harmonics 
ˆ ,kc  distorted are appeared such as 

 
 
siˆ .n 2

2k k
kc c

k  
Fourier coefficients of slit function decrease from unity to zero when  

k  (M  1), where M is the number of measurement points in the interval 
2 . 

It is naturally to require that the systematic distortion ˆk kc c  does not 
exceed the limited standard deviation 

kc , when kc kc  (k = K). 

Relative errors ˆ ˆc 1k k kc c , if cos 0
2

k
 (it is taken into account 

that 
sincos 1xx

x
 (  < x < ) [37]). 

Hence, there is a condition under which the systematic error will not ex-
ceed the allowable limit: 

 .K  
Let us suppose that shape of the diffraction line is described by Lorentz 

function (similar Cauchy function) 
12 21 x x  with normalized 

harmonics  ˆ .k
kc e  

Equality ˆkc , 

 
ln

2
K

 

satisfies, where 
B

, and B is the integral width of the function (x). 

So, scanning step is limited by the condition 

 

2 .
lnB  

If  = 10 4 specified, the allowable step is 5B . 
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Test specimen there presented was measured with step of approximately 
equal to 6B . Approximate integral line width is calculated as ratio of the 
integral measured intensity to the maximal: 
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In the same way, it can be determined that the allowable step for Gaussian 
shape of diffraction line is 3B . 

§ 9.2. Determination of the Physical Profile of Diffraction 
Line with the Best Approximation to the True 

Physical profile of the diffraction line containing information on the ob-
ject under investigation is distorted by the “instrumental” convolution. Equa-
tion of convolution by applied to inaccurate experimental data becomes a 
structural model that able to be used for statistical estimation of harmonics of 
the physical profile. 

1. Estimation of harmonics of the physical profile of the diffraction 
line by the method of pseudo-maximum likelihood. Fourier transform of 
the equation describing the observed shape of the diffraction line: 

 
  ( ) ( ) ,z z d

 
where (z) is the physical profile, and (z) is the instrumental profile, 

connects the vectors of the true harmonics of the functions entering into it: 

 ˆˆ .ˆc L C w   (9.5) 

Here, L is matrix with the vector Ĉ  along its diagonal, the remaining el-
ements of which are equal to zero. 

In practice, the instrumental profile (z) is replaced for measured refer-
ence line. Usual calculation of harmonics of the physical profile is performed 
by the formula k k kC c w . Here, ck and wk are estimates of Fourier coeffi-
cients (z) and (z) from the experimental data. 

With inaccurate (ck, wk) the deviations from the true harmonics ˆ
kC  with 

probability P have the value ˆ ĉˆ
kk k P kC CC , where 2 is the 

variance of the measurements, and P  is the percent distribution points; 
therein is taken into account that for slowly decreasing ˆkw . When 
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measured kc , hypothesis ˆ 0kc  can not be excluded with the risk of 
(1  P)  0.2, even under the assumption of a normal distribution of errors. 
Such is the risk of arbitrarily large deviations of Ck from true values at any 
measurement accuracy. 

The first approximation to an optimal estimation of the physical profile of 
the diffraction line was the regularization of the solution of the inverse prob-
lem of “instrumental” convolution according to A.N. Tikhonov [95]. To 
harmonize the regularization parameter with the errors of data it was required 
repeated experiment [35, 79]. 

However, if there are data of repeated measurements, special regulariza-
tion becomes unnecessary. The problem is solved by methods of mathemati-
cal statistics, most appropriate to objective conditions. 

Equation (9.5) in usual substitution of the data (c, w) as variables for even 
the true vector Ĉ  is satisfied only approximately. With reducing to the form 

 ˆ ˆ ,h L C wc   (9.6) 

where h is a vector of inaccurate restrictions, it turns into a structural 
model of the data with unknown parameters Ĉ . 

Let in a series of experiments be obtained certain vectors of Fourier repre-
sentations: (c1, c2, ) for the profile (z) under study; (w1, w2, ) for the 
instrumental profile (z). Then we can constitute a pair sampling that con-
tains n elements (c , w ) (  = 1, 2,  (  = 1, 2, )). The vector C, for which 
the likelihood function of a pair sampling is maximal, will be an estimate of 
the harmonics of the physical profile (z). 

Distribution of random variables h deviates from the normal one since 
there are distortions generated by constriction of infinite-dimensional ˆ ˆ,c w . 
The likelihood function is constructed as if these deviations would be absent. 
Maximization of the approximate function can bring in estimates with good 
statistical properties, although in reality the pseudo-maximal likelihood is 
obtained [2]. 

Let us introduce the indices  = (  ) for pair observations ,c w . 

One pair observation of (  = ) will be used for the initial estimate of 0C  
that is calculated from Eq. (9.5), as if the original data would be accurate. 
Over all other observations (   ) will being executed optimization. Turning 
over a pair sampling, we obtain a set of the estimates of C  (  = 1,  , n), 
and this will allow estimate their true error. 

In order not to complicate the computational procedure, we suppose that 
vectors of inaccurate restrictions   1, , nh h  are mutually independent and 
have one and the same, although unknown, covariance matrix of distribution. 
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Maximum likelihood estimation method gives the following objective func-
tion [2]: 

 

 

  
t

1 log det ,
2

. 

nL C M

M h C h C
  (9.7) 

Problem is reduced to the search such vectors of C  for which the ellip-
soid of deviations from the convolution equation by the available pair sample 
is minimal. 

Constraint vectors h = {hk} are functions of the normalized harmonics 
precisely c = {ck}, w = {wk} (k = 1,  , K). The higher order of harmonics K 
is determined by a dimensionality of the vector {ck} sufficient for an ade-
quate representation of the diffraction line of specimen. Correlation between 
the errors of harmonics of different orders is insignificant; therefore, the off-
diagonal elements of the matrix 

 

thh  can be neglected. 
The solution of the formulated problem is a minimum point of the func-

tional 
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In addition to Eq. (9.7) hither with the coefficient 0 1 , the smooth-
ing functional is included, which stabilizes the search results relative to fluc-
tuations in the data sample [95]. 

The optimizing sequence of 

   

1 0, 1 ,( )ii i iC C C  
is constructed by the Gauss-Newton method. A step controlled by the co-

efficient 0 1 is allowable if 1i iF FC C . 

Complex functions k k kh i  of the structural model at Eq. (9.6) de-
pend on complex variables k k kc a ib , k k kw u iv  and complex pa-
rameters k k kC A iB . For the iterative process of minimizing F C , 
the following calculation formulas are obtained: 

 

 

21 ,k k k k k k
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A u v k A
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b A v B u
  

2 2 .k kd w k  

Local minimum *F F C  is achieved in one or two iterations with 
the initial 0  10 . The way of dividing  in half: j+1 = 0.5 j (j = 0, 1, ) 
leads to a neighborhood of the stationary point, where 

 1 1

1

,           .~ 0.01j j j j

j j

F F F F
F F

 

The point at which the magnitude of residual deviations * *h h C  is 

within their dispersion about the mean h , and therefore within the ranges of 
data errors, is considered to be the optimal estimate of *C , that is, the best of 
possible one. 

The assumption on correspondence *C  to the measurement data is 
checked by means of a statistical criterion 
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The correction 2 1 2n n  takes into account the presence of 
one adjustable parameter in the (n  1) equations of the structural model (9.5) 
and two variables with errors in each equation. The assumption will be re-
jected with reliability not less than P, if 1K P  [2]. 

Computational expenses for the statistical estimation of harmonics of the 
physical profile are no more than to search for the optimal regularization pa-
rameter [95]. The procedure itself is simpler and more reliable. Over, when 
inexact instrumental profile, it is actual required to search for not one but two 
regularization parameters [32]. 
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2. Tests of the method of determining the physical profile. An extent 
of approach of the estimates of C  to the true vector of harmonics Ĉ  is 
checked with simulation experiments. 

Let us take Lorentz function for the physical profile of (z) and -
shaped Gaussian function for the instrumental profile of (z). Fourier 
representations of the set out (z) and (z), and of the output function 

(z) are shown in Fig. 9.6. 
Measured values of the Fourier coefficients {ck}, {wk} are modeled by 

normally distributed random variables with mathematical expectation 
ˆˆ ˆ ,  0k k ka c b , ˆ ˆ ˆ,  0k k ku w v  and with all the same prescribed var-

iance 2. Higher order of harmonics K is limited by condition ˆkc . 
In each series of simulation experiments, there are two minimally neces-

sary measurements of ck and wk (k = 1,  , K). The size of one pair-wise 
sampling of data (c, w) is n = 4. Total M = 15 10³ series of experiments was 
carried out. Estimates of the vector C, obtained from the measurements, 
make up a sample of size M n, which with 100% probability contains not 
less than 99.95% of a distribution of general population [37]. 

 

Fig. 9.6. Harmonics of model functions for simulation tests of the method  
of physical profile recovery: (1) z ; (2) z ; (3) z  

c
e
k 
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Figure 9.7 allows us to compare the true errors on the optimal estimation 
of the sought harmonics and by the traditional calculation. For simulation 
measurements of different accuracy, the growth curves of the relative errors 

ˆˆ C
kk C kr  are constructed, where ˆ

kC  is the standard root mean square 
deviation of the estimates from the true harmonics: 

 
2

1 1

1 ˆˆ .
k m

M n

C k k
mMn

C C   (9.8) 

Errors of the initial approximations 0
kC  deriving from Eq. (9.5) are pre-

dicted theoretically. With known true values of the quantities  ˆ ˆ,k kc w  and 
identical variance when measuring, the calculation formula takes the form 

 
   

1 12 2ˆ ˆ ˆ .k k kr c w
 

An empirical curve kr  is approaching k̂r  with an improvement in accura-
cy of the data (Fig. 9.7). 

In the sample of Ck  (  = 1,  , n) the errors are correlated. Correlation 
matrix varies little with the harmonics order k. There is no correlation be-
tween errors of harmonics Ck of different orders k. 

The relative inefficiency of an estimate is generally measured by how 
much its generalized variance (covariance matrix determinant of a multidi-
mensional random variable) exceeds the minimum possible [2]. 

One can calculate the inefficiency of the initial estimate C0 with respect to 
the optimal C*. For the diagonal covariance matrix of errors of the vector C 
having the dimension K, the following formula to the relative inefficiency is 
obtained: 

 

1 1

  0
2 2

1 1

ˆ ˆ .
K K

k k

K K

C C
k k

e
 

The participated here true variances 2ˆ  of the elements 0
kC  and *

kC  are 
calculated by Eq. (9.8). 

As it is uncovered, on different accuracy of the generated data, the rela-
tive inefficiency e of the traditional estimate of the sought harmonics in com-
parison with their optimal statistical estimate is approximately 1.9. 

True standard error consists of a random dispersion of estimates relative 
to the distribution center, as the general mean , and the systematic bias 
of the center : 

  

kC
ˆ

k kC C

2 2ˆ .
k k kC C C
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Fig. 9.7. Relative standard deviations from the true harmonics  
of the physical profile when data errors (a)  = 0.01; (b)  = 0.02,  
and method (1) statistical estimation; (2) traditional calculation.  

Dashed line indicates designed deviations 
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Here,  denotes a bias of the estimates, increasing with the harmonics 
order of k. 

In Table 9.4 provides information on the maximum relative biases of the 
estimates  calculated by different methods. For the traditional esti-

mate  the bias fraction in the true standard error ˆ
k kC C  is almost 

twice as large as for the optimal estimate . 
How much faster growing a random dispersion of the traditional estimates 
, which close to distribution variance 2

kC , it can be seen in Fig. 9.8. 

Table 9.4. 
The greatest systematic errors on reversing  

the convolution by data of different accuracy 

Deviation measure  = 0.01 (K = 20)  = 0.02 (K = 18) 
1 2 1 2 

Relative bias to the true value  0.15  0.43  0.23  0.56 
Bias portion in standard error  0.30  0.53  0.37  0.59 

 (1) statistical estimation; (2) traditional calculation. 

 

Fig. 9.8. Dispersion relatively the mean estimates  
of Fourier coefficients of the physical profile:  

(1) statistical estimation; (2) traditional calculation (  = 0.01) 
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Based on the results of simulation tests, it can be concluded that the statis-
tical method applied significantly improves the efficiency of estimating the 
vector of the sought harmonics, limiting both bias and variance. 

Introduced optimization procedure allows without additional calculations 
to estimate the true error of estimates  by J. Tukey method known as 
“jackknife” [15]. 

An error of estimates obtained from n sub-samples of size (n  1) with the 
successive exclusion of one element has the formula 

   

Here,  is the average of the sample estimates Ck  (  = 1,  , n). To 
obtain an unbiased estimate of the true standard deviation, it is required mul-
tiply  by  [15]. 

In Table 9.5 the errors of the optimally estimated harmonics Ck by the 
simulated tests are summarized. The average sample estimate of the true 
standard error 2ˆ

kCs M  is biased down, despite the correction involved; 
because of small size of each re-sampling [15]. 

Probability distribution for estimates of Ck is unknown; therefore the sig-
nificance of the obtained harmonics is tested using the Chebyshev inequality 
[37]. If ˆ 1

kk CC s n P , then there will be ˆ 0kC  with reliability of 
not less than P. 

Under expensive real experiment apparently we will have to limit it-
self to the minimum required sample of data and take into account that 
the estimates of the true errors of obtained harmonics of the physical pro-
file are understated. 

Table 9.5. 
Standard deviations of the estimates  

at the statistical method for reversing the convolution 
 

Calculated values for harmonics Ck 
Errors in simulation  
measurements data 

 = 0.01  = 0.02 
k = 1 k = 20 k = 1 k = 18 

Error by the mean of sample estimates, ˆ
kCs 0.0068 0.0152 0.0142 0.0238 

Expected random error, 
kC  0.0092 0.0177 0.0187 0.0290 

True error, ˆ
kC  0.0099 0.0185 0.0196 0.0313 

 

*
kC
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Table 9.6. 
Parameters of the dislocation structure  

of low-carbon steel specimens measured from harmonics of the diffraction line  

Deformation 
extent 

Method for determining the physical profile 
statistical estimation traditional calculation 

Dislocation 
density 2[ ]cm  

Fluctuations 
of density 

Dislocation 
density 2[ ]cm  

Fluctuations 
of density 

 18% [1.5; 1.8] 109  [0.19; 0.25] [1.8; 2.2] 109 [0.15; 0.20] 
 43% [2.8; 3.6] 109 [0.11; 0.16] [2.3; 3.0] 109 [0.14; 0.20] 
 
3. Verifying the statistical estimate of the physical profile by practice. 

On effectiveness of optimization in applying to the real experiment it can be 
decided by the amount of reliable information retrieving from harmonics of 
the physical profile of the diffraction line. 

Let us consider an example of diffraction analysis of a 
microinhomogeneous dislocation structure of low-carbon steel specimens 
with different extent of deformation. X-ray measuring was performed by 
D.A. Kozlov, as detailed in § 8.3. 

Original data for determining the parameters of the structure presented in 
Table 9.6, these are the optimal harmonics of the physical profile of C* and 
their initial approximations of C0 calculated by traditional way. In a real ex-
periment it is useful to calculate C0 with the regularization coefficient   
10 4 [79]. 

In view of the underestimation of the errors, the required reliability of 
harmonics significance is P = 0.999. 

Approximate 90% confidence intervals for the average dislocation density 
and its relative fluctuations on variously oriented crystals are constructed 
using the automated system for studying the dislocation structure of 
polycrystals. In Table 9.6 the average intervals for 60 random samples of size 
60 from the total sample of 900 measured values of parameters are given. 

Loss of information under the traditional calculation is such that separa-
tion of the average dislocation densities in the test specimens has reduced on 
order, and the fluctuations of the densities became quite indistinguishable. 

Practical results verified the good quality of the statistical estimate of the 
physical profile of the diffraction line. 
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CHAPTER 10 
AUTOMATED SYSTEM OF RESEARCH  
OF DISLOCATION STRUCTURE OF POLYCRYSTALS 

Diffraction studies of deformed polycrystals are supported by an interac-
tive software system consisting of two subsystems; these are analysis of dif-
fraction measurements and identification of dislocation structure models. The 
first subsystem realizes the optimal, by results accuracy, methods for the pro-
cessing of diffractometric data. The identification subsystem provides exper-
imentation with the models of diffraction observations for different structure 
states of the object [86]. 

§ 10.1. Studying the Dislocation Structure  
by Set of Models being Identified 

Ensemble of the models for observations on the object shows up a meas-
urable effect of the dislocation structure of a polycrystalline system on har-
monics of the physical profile of the diffraction line: 

   ,    1, 2,) ( ).(k k kA F x u k  
The variable xk includes the order of the harmonics k /æ, where æ is the 

fraction of the observation interval from the period in the diffraction space, 
the indices of the measured line {HKL}, and the crystallo-geomertric coeffi-
cient for existing slip systems. Systematic errors both the model itself and the 
data that increase with k are compensated by the auxiliary variable uk (§ 7.1). 

Object model parameters are enclosed at the vector . Functions of the 
observations model F(xk, ) are equipped with various methods of estimation 
of  based on the maximum likelihood principle. The vector , for which 
agreement of the observations model with the data {Ak} by statistical criteria 
is not rejected, is considered to be a measured value of the vector of parame-
ters of the dislocation structure. Searching the result of the measurement out 
of sampled start points 0 uniformly distributed in the area of physical limita-
tions is a computational experiment with the model of observations over the 
object. 

1. Mathematical processing the data of diffraction measurements. 
Vectors of accumulated pulses under X-ray scanning the investigated profile 
of the line (specimen) as well as the instrumental profile (standard) to be ex-
cluding are inputted to the computer either from an external storage device or 
from a hard disk, by requested address under the program controlling. Two 
independent measurements of the specimen and standard are required. Refer-
ence information on the files structure of the original data is accompanied by 
a demonstration of an example. 

Allowability of data and its quality are checked at the stage of preliminary 
processing. If the data is not rejected, the X-ray wavelength, and the diffrac-
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tion line measurement interval as well as the type of crystal lattice (bcc, fcc) 
are requested to calculate the physical constants. 

Automated system of research creates for itself the most accurate infor-
mation support, realizing new methods of processing measurements; these 
are adaptive harmonic analysis of the observed diffraction line, furthermore 
optimal estimation of the diffraction line physical profile representing the 
object. 

1. The adaptive method of harmonic analysis of the diffraction line real-
ized the following principles: Fourier series is constructed from the coeffi-
cients self-correcting relative to the background present in the measurements; 
the length of the series approximating the line profile is consistent with the 
accuracy of primary data. 

Sequential processing module performs an iterative search for the best 
self-adjusting regression model of observations and provides the Fourier co-
efficients of the analyzed line profile that are optimal in accuracy and stabil-
ity. Real errors, including systematic deviations, are seen from the pair differ-
ences of the harmonics approximating the repeated measurements (§ 9.1). 

The service program conducts a documented protocol of data processing 
in the made workbook and provides operative information on statistical con-
clusions from the analysis of the experiment. Examples of graphical display 
of the results of the adaptive harmonic analysis of measurements are shown 
in Fig. 9.4 – 9.5. 

2. Harmonics of the physical profile of the diffraction line are estimated as 
parameters of an inaccurate structural model of the observed profile arising 
from the equation of “instrumental” convolution. Vector of harmonics of the 
physical profile is chosen so that discrepancies with the convolution formula 
are within the data errors. 

Module of the joint processing generates a pair sampling from two meas-
urements of the specimen and the standard and performs a search for as many 
independent stable estimates of the vector of harmonics of the physical pro-
file as can be extracted from the existing pair sampling of data (§ 9.2). 

In the protocol, the sample vectors of estimates are presented in the form 
of a table together with information on their covariance matrix. Dispersion of 
estimates is depicted graphically, for example, as in Fig. 8.4. 

Allowability of the received harmonics is checked for the predicted se-
cond moment of the physical profile. With poor original data, it can turn out 
to be negative. According to acceptable estimates, the physical profile asym-
metry coefficient and its sample variance are calculated. 

Vectors of significant harmonics of the physical profile of the diffraction 
line form the core of information support for the subsystem of identification 
of dislocation structures. Significance of harmonics in view of systematic 
errors should have a confidence of not less than 99%. If the experiment did 
not provide reliable information, the program execution is terminated. 

Researcher is provided with the means to manage the data organized by 
program. Unused data can either be destroyed, or moved to the archive. 
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2. Identification of the models for the plastic deformation structure of 
polycrystals. To determine the dislocation structure of plastic deformation, 
those harmonics Ak, are the most informative, in which the small value 

æ HKLk Q  (§ 6.3). Therefore, it will be optimal measuring a diffraction 
line with large {HKL} at the maximum possible interval. In the case of a 
sharp crystallographic texture, in order to correctly chouse {HKL}, it is re-
quired to know the parameters of the distribution of the crystal orientations, 
an example is considered in § 8.3. 

Procedure for identifying a system of dislocations from the measured 
harmonics of the diffraction line includes: in the first stage, a nonparametric 
method; at the second stage, parametric methods that correspond to the cir-
cumstances. 

1. Nonparametric identification allows test for accordance the chosen 
model from the provided list to the object under study. Method of non-
parametric identification is a sequential linear regression analysis of the ob-
servations Yk =  ln Ak over the object. Into the observations vector {Yk}, ini-
tially having the smallest dimension, higher-order harmonics are sequentially 
included until a discrepancy {Yk} with the regression function, which is a 
second-order polynomial in k, is found. 

For example, in Fig. 8.4 the regression curves are depicted, which were 
made by a successive analysis of harmonics of the diffraction line {112} of 
two specimens of low-carbon steel with different extent of deformation. In 
the specimen with 18% deformation, all reliably harmonics are fitted into one 
regression curve. When deformation of 72% the higher-order harmonics are 
deviated from the regression line of the lower harmonics, thereby the hetero-
geneity of the reflecting crystals is revealed. 

The model of a mixed dislocation structure of a polycrystal will not be re-
jected only for the second specimen. The model of a microinhomogeneous 
(or homogeneous) dislocation structure is not discarded for both specimen. 
When in reality the dislocation structure is mixed, as in second specimen, but 
the model of a microinhomogeneous (or homogeneous) structure of a 
polycrystal is chosen, the analysis of the lower harmonics will show a 
“smoothed” structure approaching the main structure in specimen (§ 8.3). 

If the discrepancy with the regression function under a sequential analysis 
of the observations {Yk} is detected in initial of k, the model of the plastic 
deformation structure is rejected in general. Here, either data involve serious 
errors, or structure existed is of another physical nature (§ 7.2). 

2. Parametric identification of a complex dislocation structure of a poly-
crystalline system is performed on the stood out main parameters in models 
of different levels. 

Parameters of a random system of dislocations inside crystals there are 
determined in the approximation of a homogeneous polycrystal. Fluctuations 
in distributions of sizes and coordinates of dislocation loops relative to the 
average distributions for a polycrystal are all the same indistinguishable. Ne-
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glect by fluctuations of the dislocation density with nonuniform deformation 
of the crystals receives to a bias in the estimates of its average value in a 
polycrystal d . 

Transferring the structural analysis from individual crystals to a poly-
crystalline system as a whole makes as the main parameters that the dis-
location density distribution over differently oriented crystals. Details of 
the dislocation structure merge, turning into a unified parameter of de-
fects in crystals. In the process of measuring the nonuniform density of 
dislocations in a polycrystal, the “over” parameters of the model of object 
are limited in the region of allowable values. 

Microinhomogeneity of the dislocation density arising from a disper-
sion of the orientations of crystals is measured by the relative standard 
deviations of the average densities in equally oriented crystals from the 
total average for all crystals: 

 

2
d d .

 

To identify the model of a homogeneous dislocation structure of a 
polycrystal, the harmonics of the diffraction line of low-order are suffi-
cient. Information on the inhomogeneity is contained in the harmonics of 
the higher-order. 

In the deformation texture, there are components with well-ordered crys-
tal orientations. Fluctuations in the dislocation density 2

d  due the imper-
fect order still significantly exceed the Poisson variance, as it is revealed by 
analysis of thin-sheeted low-carbon steel (Table 8.6). But with the macro-
scopic inhomogeneity that exists, fluctuations 2

d  can be neglected. Main 

parameters become the average dislocation densities d  in the components 
of a mixed structure of a polycrystal. 

Weight fractions of dissimilar crystals involved in the reflection are 
predicted from the measured distribution of crystallographic orientations 
(§ 8.1). Without recourse to texture analysis, only it is known that weight 
fractions are in the interval (0, 1), where they will have to be sought when 
separately measuring the average dislocation densities in the structural 
components. 

Each model of the object has its own software module that performs 
computational experiments and statistical analysis of their results. 
A series of experiments is planned to obtain sampling of measured values 
of the vector of structural parameters of size 900, keeping in mind that 
with probability of 99.9% between its extreme values it is located 99% of 
a population distribution [37]. 
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Because the confidence intervals obtained from large samples are bi-
ased as a consequence of errors in the model, there is organized the ex-
traction of a set of random samples of 60 measured values of the vector of 
parameters. This is a sufficient sample size, in order to construct a self-
correcting along a sampling distribution the approximate confidence in-
tervals of estimates such that the confidence probability of P is not less 
than the given probability (§ 7.1). An evolved average of the confidence 
intervals for parameters of the dislocation structure is recorded, for exam-
ple, as in Table 8.4. 

Method of interval analysis will allow to determine how the parameters of 
the structures under consideration are reliably distinguishable, assuming an 
equal probability of all values of the parameters in a range of variations of 
confidence intervals for estimates [93]. 

Sampling distributions of the measured values of parameters are repre-
sented in the form of histograms. An example showing the distribution of the 
measurements of inhomogeneous dislocation density is Fig. 8.7. By the his-
tograms maximum are determined the most plausible estimates of the aver-
age dislocation density and its fluctuations over the crystal orientations. 

With a macroscopic inhomogeneity of the dislocation density in the crys-
tallographic texture, an image of the reproduced components of the intensity 
distribution of X-ray scattering is created, as in Fig. 8.6. 

In the process of constructing and test of models, a versatile study of the 
inhomogeneous dislocation structure of deformed polycrystals is carried out. 

3. Organization of studies for the structure of martensite transfor-
mation on the example of carbon steel. Method of constructing a model of 
dislocation structure arising by shear transformation of the crystal structure is 
adapted to the real phase state of metal systems [68]. 

Main parameters of the phase and dislocation structure of martensite 
formed during quenching of steel are determined. Chosen model agrees 
with the experiment that proven the existence of a system of small dislo-
cation loops in martensite (§ 7.2). Original data are the harmonics of the 
physical profile of the diffraction line, measured with all the best accura-
cy (§ 9.1 and § 9.2). 

Investigations were carried out on quenched specimen of U10 steel. As a 
reference representing an instrumental profile, an annealed specimen of steel 
01Yu, where the concentration of carbon in 100 times less, is used. 

The angles intervals of X-ray measuring of the diffraction lines in Co-K  
radiation are follows 

 

47.8  57.0     110 ,
 2   

94.8  104.8    11
}

2 .
{

W–B
 

The scanning step is 0.1° with the pulse counting time of 10 s per point. 
Number of passes for the specimen is 3, and for the reference 6. 
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Process is repeated with a new installation of the specimen and reference, 
as prescribed by the method of optimal estimation of the physical profile of 
the diffraction line (§ 9.2). X-ray measuring has been performed by 
D.A. Kozlov. 

1. Estimation of the diffraction spectrum model. In the phenomenological 
model of the constitution of the arising spectrum of X-ray lines, all available 
information on the martensite phase state is represented. The optimal by ac-
curacy and stability method of the spectrum model estimation was developed 
in [69 70]. 

In the iron-carbon system, a two-phase martensite is revealed, consisting 
of crystals with different tetragonality extent of the body-centered lattice. 
A diffraction spectrum of two-phase martensite with an impurity of the re-
tained austenite that is matrix –phase is under consideration. 

Equations of the model describe the coefficients of Fourier representation 
of the multiplet observing in the experiment: 

 
cos( ,)k k i i
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Main multiplet {110} consists of five components with coordinates  

z0 < z1 < z2 < z3 < z4 in the normalized interval of observations ( 1, 1). The 
coordinate z0 refers to the {111} line of fcc crystals of the –phase. 

Weight fractions of the martensite components are bound by the re-
strictions 1 
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the weight fraction of –phase according to the measurement data on the 
amount of retained austenite in carbon steel is in the range (0 < w0 < 0.2) 
[52]. 

In the model of {112} multiplet, required to check the reliability of the 
revealed phase structure of martensite, the rearrangements are occur: 

1 4 2 3 0 ,   0w w w w w . 
The number of independent parameters of n-component model, including 

the vector of being estimated harmonics {Ak} (k = 1, 2,  , kmax) of the ap-
proximate shape of spectral lines, is equal to kmax + 2n  3. 

                                                      
1 The effect of weakening of the intensity of diffraction due to displacements of 

the lattice sites around the interstitial carbon atoms for doublets is insignificant [70]. 
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In an initial approximation, harmonics Ak (k > 1) decrease as 2
~ k ; the 

first-order harmonic is modeled by a random variable close to unity. With 
a random choice of starting points (w, z), which satisfy all restrictions, 
there is searched the global minimum of the objective function of the 
method [69]. 

Systematic errors of the model and data, which according to statistical 
checks are comparable to random dispersion, are compensated for the 
centering of deviations from the model relative to their overall average. 
The number of degrees of freedom is reduced and, in order to degrees of 
freedom remain for check the adequacy of the model, it is required  
kmax > 2n  2. 

Optimum is considered achieved if the agreement of the predicted and 
observed spectrum is not rejected by a statistical check, and moreover the 
estimates of all parameters are significant and not correlated. A smoothest 
curve for approximation of the profile within the data dispersion is select-
ed. Stabilized in this way solution produces the least biased estimates 
[69 70]. 

Figure 10.1 depicts the diffraction spectra of martensite of carbon steel 
with separated lines. The lines profile was restored from the measured 
harmonics using the method of stable summation of Fourier series [95]. 

In Table 10.1 are given the sample mean and standard deviations of 
estimates of the phase structure of martensite (sample size of 17). To cal-
culate the carbon content in phases  and , data are used on dependence 
of the lattice periods by the concentration of the interstitial solid solutions 
[60]. 

There is not detected the presence of significant discrepancy in the in-
formation on the phase state of martensite of carbon steel provided by 
different multiplets. 

Table 10.1. 
Estimates of the phase structure parameters  

of the carbon steel martensite 
Phase 

components 
Weight fraction Tetragonality 

extent 
Carbon 

concentration  
[wt %] 

 – high-carbon 0.5620  0.0227 1.0331  0.0010 0.7022  0.0222 
 – low-carbon 0.2638  0.0130 1.0065  0.0033 0.1386  0.0694 
 – austenite state 0.1742  0.0134  0.3338  0.0422 

    
 – high-carbon 0.6789  0.0143 1.0382  0.0006 0.8107  0.0122 
 – low-carbon 0.3211  0.0143 1.0074  0.0022 0.1562  0.0466 
In the second row, estimates from {112} line measuring; before the subsequent 

{110} line measuring, the aging of martensite has occurred by precipitation 
of carbon with the formation of clusters [21]. 
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Fig. 10.1. Identified components of the diffraction multiplets of carbon steel: 
(a) {110}; (b) {112}. Dotted line shows the predicted profile of multiplet.  

Dashes mark off the {111} line of –phase 
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2. Estimation of the dislocation structure model. Theoretical model of ob-
servations describes the shape of the lines of the diffraction spectrum, based 
on conceptions of a system of dislocations in crystals. Having harmonics of 
the approximate shape of the spectrum lines, we will carry out a test of the 
model of martensite transformation structure. 

Size of sample {Ar} (r = 1, 2,  , m) should provide a good covariance 
matrix of observations VA. Estimates of the distribution variance of 2

k  with 
samplings of small size are underestimated, so an acceptable sample size of 
m  10. 

Data there should be sufficient to estimate all the parameters of the dif-
fraction observations model, including the approximation coefficients of sys-
tematic deviations by Legendre polynomials of a suitable degree l, so one 
must have M  3 + (lmax + 1) harmonics Ak, whose order k is not lower than 
the applicability limit onto the model Eq. (7.6). 

Function fk( ) of the model Eq. (7.6), specified on the interval k  kmin, is 
reduced to the linear regression function of the logarithms of (unbiased) har-
monics Yk = ln Ak. Due this, the lower limit of the interval kmin is found by 
the method of regression analysis of observations with successive exception 
of the lower-order harmonics (k = 1, 2, ) (§ 7.1). 

For inhomogeneous martensite, only an inaccurate regression model of 
observations can be constructed. It is expected that the completely unknown 
systematic distortions present in the observations vector of Y become much 
smaller than Yk at k  K due to more rapid decreasing of the higher-order 
harmonics of the polluting –phase. Therein the search for a spacing where 
deviations of Yk from the regression equation are comparable with their errors 
leads to the allowed limit of kmin, although estimates of the regression coeffi-
cients are heavily biased. 

Sequential regression analysis of the available data, actually, performed a 
nonparametric identification of the system of small dislocation loops in te-
tragonal crystals of martensite. Dispersion of observations data relative to the 
regression line can be seen in Fig. 10.2. 

Further there is search for parameters using harmonics Ak belonging to the 
interval of observability of the system of dislocations on which k  kmin. 
Search method is to solve the optimization problem in the form of (7.7). 

Dislocation density is measured with limitation of the remaining parame-
ters of the dislocation structure model in the allowed intervals established 
from theory and experiment (§ 6.2 and § 7.2): 

 

8 2 12 2
d1 0  cm   10  cm ;

1 0 30,    0 0.3;

 0 3,    0 3.

a

b d  
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Fig. 10.2. Dispersion of harmonics of an approximate shape  

of lines in the model of {110} martensite multiplet; regression curve marks 
the interval of observability of the dislocations system (æ = 0.2295) 

In a priori intervals, all parameter values are equally probable. 
A good approximation of systematic errors at sufficient sample of original 

data is achieved by Legendre polynomials not above than the first degree 
(lmax = 1). 

Tests conducted, with a confidence probability of not less than 90%, re-
vealed for the dislocation structure of martensite transformation a limitation 
of the average radius of the loops 25a . 

In Table 10.2 the estimates of the average dislocation density in marten-
site of carbon steel obtained from a series of computational experiments are 
presented. 

Table 10.2. 
The average density of dislocations  

in the martensite transformation structure 
Specimen Approximate 90% confidence 

intervals of estimates 
Most plausible estimates by 
the maxima of histograms 

 U10  [0.9; 1.0] 1012 cm 2  (0.6 1.0) 1012 cm 2 
 01Kh5  [0.7; 0.8] 1011 cm 2  (0.6 1.0) 1011 cm 2  
 

 ln Ak 

k  0  13

4.1 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 
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Fig. 10.3. Sampling distribution of the dislocation density measurements  
in the martensite crystals of steel: (1) 01Kh5; (2) U10. 

Confidence intervals were produced an average of 900 random samples 
of size 60, extracted from the aggregate sample of measurements data 9 10³. 

To compare there are given the measurements data for dislocation density 
in a single-phase cubic martensite of steel 01Kh5 with carbon concentration 
not more than 0.01 wt % (§ 7.2 and § 7.3). 

Sampling distributions of the measured values of dislocation density in 
the specimens under study is represented by histograms in Fig. 10.3. 

In tetragonal martensite, the measured dislocation density became an or-
der of magnitude higher than in cubic. 

All available information on the dislocation structure of the martensitic 
transformation contained in the diffraction experiment can, in principle, be 
extracted using the data of analysis of two multiplets: {110} and {112}1. 

Figure 10.4 shows dispersion of harmonics of the profile of lines in the 
diffraction multiplet {112} with the identified components parameters pre-
sented in Table 10.1. A sample size is m = 20. 

                                                      
1 When microtwins occur, the diffraction line {112} is inapplicable for disloca-
tion structure analysis. The model (7.5) is rejected as inadequate to observations, 
for the parting of dislocations in twinning significantly affects the beginning 
harmonics. 
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Fig. 10.4. Dispersion of harmonics of an approximate shape of lines in the 
model of {112} martensite multiplet; regression curve marks the interval  

of observability of long-range order in the dislocations system (æ = 0.1787) 

Harmonics {Ak} of the order k  3 are statistically significant with a con-
fidence of 99.9% under estimating the true variance 2

kA  by the method 
“jackknife” [15]. The variance homogeneity is not rejected by statistical test 
[31]. 

Available data is applicable to determine the long-range order in the ar-
rangement of dislocation loops on parallel slip planes. 

The method of measuring dislocation density and order parameters by 
beginning harmonics of the diffraction line with large indices {HKL} is pre-
sented in § 7.3. The transformation of the diffraction observations model for 
tetragonal crystals is described in § 7.4. 

In Figure 10.5 the distribution of the measured values of the basic param-
eters of the dislocation structure model is presented while accumulated data 
sample of size 9 103. 

Table 10.3 presents the average of 900 confidence intervals for being 
measured parameters that constructed over random samples of size 60, ex-
tracted from the total sample of measurements. 

 ln Ak 
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Fig. 10.5. Sampling distribution of the measurements of dislocation density – 
 

2
d [cm ]  and of degree of order –  in the martensitic transformation 

structure of carbon steel 

Table 10.3. 
Long-range order in the dislocation structure  

of the martensitic transformation 
Parameter 
measured 

Approximate 90% confidence 
intervals of estimates 

 Most plausible estimates by 
the maxima of histograms 

Dislocations 
density d  

 [0. 71; 0.73] 1012 ²   (0.6 1.0) 1012 ²  

Degree of the 
order   [0.88; 0.91]  (0.90 0.95)  

Lower confidence limit of the order period is    1.0. 

The dislocation density estimate close to that expected according to anal-
ysis of the diffraction multiplet {110}. 

By practical example it is reliably revealed the forming a periodic disloca-
tion structure under the martensitic transformation of crystals. 

§ 10.2. Simulation of a Random System  
of Dislocations on Measured Parameters 

Uniform dislocation distribution in the slip plane is unstable. This is evi-
denced with the behavior of direct parallel dislocations, that prescribed by the 
equations of their moving in the stress field [26]. 
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There are an infinite number of allowable microstates of a system of dis-
locations with the observed coordinates and sizes of loops at available their 
average concentration in crystal. Statistical modeling predicts the most prob-
able microstate of a system of dislocation loops, which can be stable. 

If there are many independent flows of loops from different activated 
sources, the summary flow in the limit can become Poisson one [59]. 

Simulated stream is a sequence of random vectors rj (j = 1, 2, ) that de-
scribe the coordinates of the centers of dislocation loops in the slip plane with 
equiprobable directions in the interval of angles (0, 2 ). Distances r = r  be-
tween loops arriving one after the other are subject to the exponential distri-
bution law: 

   .)0 (rr e  
The most likely is the smallest distance r between the centers of loops. 

Average distance is the inverse value of the flux density: 1r  [37]. 
Domain of setting of the Poisson flow can be divided into independent 

subregions [3]. For an allocated volume in crystal with the known average 
concentration of loops there is calculated the expected number of loops n, and 
the flux density  is calculated from it. Realization of a random sequence 
forming a stream is calculated by the formula 

 
1 log ,r z  

where z is a uniformly distributed random variable on the interval [0, 
1] [17]. 

It is assumed that dislocation loops with equal probability can appear in 
all q types of slip planes in a crystal. 

A random number of loops l that are in the -th pack of slip planes (  = 1, 
 , q) under consideration, when their total amount in allocated volume of 

crystal of n, is determined from the probability experiments by the Bernoulli 
scheme [37]: 

 
1

;
n

i
i

l  
1

1

with probability  

with probability 

1     ,

0     1 .i

q

q
 

The most probable value of the sum of n Bernoulli random variables is 
1n q  (q = 6 for bcc; q = 4 for fcc). 

Random fluctuations of sizes appearing loops are considered to be ap-
proximately logarithmically normal with mean parameters in a polycrystal. 

For the identified structure of low-carbon steel deformed by 32% using 
statistical modeling a graphic image of the distribution of dislocation loops in 
a pack of slip parallel planes around 0.5 m in thickness was obtained. Be-
tween the acting slip planes a distance is accepted of  200 Å. 
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Calculations were performed on the parameters of dislocations system 
randomly chosen from the confidence intervals of the estimates, where all 
their values are equally probable: 

 
Dislocations density 

d  
Average radius 
of loops a  

Variation 
coefficient  

Correlation 
radius b  

 [1.8; 2.3] 109 cm 2  [460; 552]  [0.18; 0.22]  [1.5; 1.8] 
 
Generated Poisson flow of loops with densities corresponding to the pa-

rameters of the structure of specimen revealed the frequent occurrence of 
stretched random accumulations of loops randomly deviding the pure regions 
of a crystal. 

Figure 10.6 exhibited randomly originated forms of boundaries of multi-
ply connected regions, which are inherent to the experimentally observed a 
cellular dislocation structure of deformed crystals. 

 

Fig. 10.6. Random accumulations of dislocation loops in a slip band  
after deformation of 32%; statistical modeling with measured parameters  

of structure of low-carbon steel 

Visible microstates in the ensemble of random systems of dislocations co-
incide with experience. This leads to the conclusion that a stable system, gen-
erated from a large number of loops of dislocations with self-regulating ran-
domness, is subject to a general description by the Poisson model. 
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§ 10.3. Conclusion on Practical Tests  
of the Dislocation Structure Studying Method 

With plastic deformation of polycrystals, the average dislocation den-
sity therein by the estimates obtained increases within one order of mag-
nitude, which is comparable to the observed increase in the yield strength 
as a result of strain hardening. With increasing deformation, the 
nonuniformity of the dislocation density distribution across the crystals 
decreases. Fluctuations of density, caused by dispersion of crystal orienta-
tions, lower regularly (Fig. 10.7). 

 

Fig. 10.7. Changing microinhomogeneous dislocation density with increasing 
extent of deformation of metals: (a) low-carbon steel after (1) 18%  

and (2) 43% deformation by rolling; (b) pure aluminum after (1) 20%  
and (2) 52% deformation by upsetting (data by D.A. Kozlov) 
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Various dislocation models of strain hardening of crystals derive to the 
same equation of the relation between the strength for plastic flow 0  and 

the dislocation density d  as by original Taylor theory: 0 d  [55]. 
Consequently, the measured relative fluctuations in the density of disloca-
tions reveal a degree of inhomogeneity of strain hardening of a polycrystal, 
since approximately a ratio is true 

 
   

0 d

0 d

1 .
2  

A giant increase in the density of dislocations is related with sheared 
phase transformations in polycrystalline systems, whose picture is guessed 
from the structures that have arisen. 

The texture transformation appears as a macroscopic shear, localized in 
an ensemble of crystals undergoing a breakthrough of constrained plastic 
flow (§ 8.3). 

The martensitic transformation is accomplished by microscopic shears, 
jointly reassembling the crystal lattice (§ 7.2). In crystals with the displace-
ments of reduced symmetry, the shears are multiplied, and the dislocation 
density reaches an ultimate value (§10.1). 

Revealed periodicity in the dislocation structure of the martensitic trans-
formation of crystals uncovers the wave nature of the process. 

The excitation of long-wave lattice vibrations is theoretically explained by 
quantum transitions of “hot” electrons to lower energy levels on a sharp fall 
in temperature. It is known the process of emission of long-wavelength pho-
nons (lattice vibration quants) by conduction electrons during low-
temperature relaxation of the crystal system [46]. 

If the observed period of order  is commensurate with the phonon wave-
length, then the dislocation loops of a comparable radius    (§10.1) dissi-
pate phonons nucleated them [94]. 

Information on the states of the dislocation structure of polycrystalline 
systems, obtained in practice, is consistent with the physical representations, 
which proves the correctness of the theoretical propositions at the basis of the 
method. 
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